Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Plant Physiol ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748559

ABSTRACT

Species mixture is promoted as a crucial management option to adapt forests to climate change. However, there is little consensus on how tree diversity affects tree water stress, and the underlying mechanisms remain elusive. By using a greenhouse experiment and a soil-plant-atmosphere hydraulic model, we explored whether and why mixing the isohydric Aleppo pine (Pinus halepensis, drought avoidant) and the anisohydric holm oak (Quercus ilex, drought tolerant) affects tree water stress during extreme drought. Our experiment showed that the intimate mixture strongly alleviated Q. ilex water stress while it marginally impacted P. halepensis water stress. Three mechanistic explanations for this pattern are supported by our modelling analysis. First, the difference in stomatal regulation between species allowed Q. ilex trees to benefit from additional soil water in mixture, thereby maintaining higher water potentials and sustaining gas exchange. By contrast, P. halepensis exhibited earlier water stress and stomatal regulation. Second, P. halepensis trees showed stable water potential during drought, although soil water potential strongly decreased, even when grown in a mixture. Model simulations suggested that hydraulic isolation of the root from the soil associated with decreased leaf cuticular conductance was a plausible explanation for this pattern. Third, the higher predawn water potentials for a given soil water potential observed for Q. ilex in mixture can - according to model simulations - be explained by increased soil-to-root conductance, resulting from higher fine root length. This study brings insights into the mechanisms involved in improved drought resistance of mixed species forests.

2.
Sci Total Environ ; 903: 166149, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-37567315

ABSTRACT

Carbon dioxide (CO2) uptake by plant photosynthesis, referred to as gross primary production (GPP) at the ecosystem level, is sensitive to environmental factors, including pollutant exposure, pollutant uptake, and changes in the scattering of solar shortwave irradiance (SWin) - the energy source for photosynthesis. The 2020 spring lockdown due to COVID-19 resulted in improved air quality and atmospheric transparency, providing a unique opportunity to assess the impact of air pollutants on terrestrial ecosystem functioning. However, detecting these effects can be challenging as GPP is influenced by other meteorological drivers and management practices. Based on data collected from 44 European ecosystem-scale CO2 flux monitoring stations, we observed significant changes in spring GPP at 34 sites during 2020 compared to 2015-2019. Among these, 14 sites showed an increase in GPP associated with higher SWin, 10 sites had lower GPP linked to atmospheric and soil dryness, and seven sites were subjected to management practices. The remaining three sites exhibited varying dynamics, with one experiencing colder and rainier weather resulting in lower GPP, and two showing higher GPP associated with earlier spring melts. Analysis using the regional atmospheric chemical transport model (LOTOS-EUROS) indicated that the ozone (O3) concentration remained relatively unchanged at the research sites, making it unlikely that O3 exposure was the dominant factor driving the primary production anomaly. In contrast, SWin increased by 9.4 % at 36 sites, suggesting enhanced GPP possibly due to reduced aerosol optical depth and cloudiness. Our findings indicate that air pollution and cloudiness may weaken the terrestrial carbon sink by up to 16 %. Accurate and continuous ground-based observations are crucial for detecting and attributing subtle changes in terrestrial ecosystem functioning in response to environmental and anthropogenic drivers.

3.
Plants (Basel) ; 11(19)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36235447

ABSTRACT

In Mediterranean ecosystems, the projected rainfall reduction of up to 30% may alter plant-soil interactions, particularly litter decomposition and Home Field Advantage (HFA). We set up a litter transplant experiment in the three main forests encountered in the northern part of the Medi-terranean Basin (dominated by either Quercus ilex, Quercus pubescens, or Pinus halepensis) equipped with a rain exclusion device, allowing an increase in drought either throughout the year or concentrated in spring and summer. Senescent leaves and needles were collected under two precipitation treatments (natural and amplified drought plots) at their "home" forest and were left to decompose in the forest of origin and in other forests under both drought conditions. MS-based metabolomic analysis of litter extracts combined with multivariate data analysis enabled us to detect modifications in the composition of litter specialized metabolites, following amplified drought treatment. Amplified drought altered litter quality and metabolomes, directly slowed down litter decomposition, and induced a loss of home field (dis)advantage. No indirect effect mediated by a change in litter quality on decomposition was observed. These results may suggest major alterations of plant-soil interactions in Mediterranean forests under amplified drought conditions.

4.
Plant Cell Environ ; 45(7): 1967-1984, 2022 07.
Article in English | MEDLINE | ID: mdl-35394675

ABSTRACT

Increasing temperature and drought can result in leaf dehydration and defoliation even in drought-adapted tree species such as the Mediterranean evergreen Quercus ilex L. The stomatal regulation of leaf water potential plays a central role in avoiding this phenomenon and is constrained by a suite of leaf traits including hydraulic conductance and vulnerability, hydraulic capacitance, minimum conductance to water vapour, osmotic potential and cell wall elasticity. We investigated whether the plasticity in these traits may improve leaf tolerance to drought in two long-term rainfall exclusion experiments in Mediterranean forests. Osmotic adjustment was observed to lower the water potential at turgor loss in the rainfall-exclusion treatments, thus suggesting a stomatal closure at more negative water potentials and a more anisohydric behaviour in drier conditions. Conversely, leaf hydraulic conductance and vulnerability did not exhibit any plasticity between treatments so the hydraulic safety margins were narrower in the rainfall-exclusion treatments. The sequence of leaf responses to seasonal drought and dehydration was conserved among treatments and sites but trees were more likely to suffer losses of turgor and hydraulic functioning in the rainfall-exclusion treatments. We conclude that leaf plasticity might help the trees to tolerate moderate drought but not to resist severe water stress.


Subject(s)
Quercus , Acclimatization , Dehydration , Droughts , Plant Leaves/physiology , Quercus/physiology , Trees
5.
Data Brief ; 29: 105349, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32181309

ABSTRACT

Water isotopes from plant xylem and surrounding environment are increasingly used in eco-hydrological studies. Carrière et al. [1] analyzed a dataset of water isotopes in (i) the xylem of three different tree species, (ii) the surrounding soil and drainage water and (iii) the underlying karst groundwater, to understand tree water uptake during drought in two different Mediterranean forests on karst setting. The xylem and soil water were extracted by cryogenic distillation. The full dataset was obtained with Isotope Ratio Mass Spectrometry (IRMS) and Isotope Ratio Infrared Spectrometer (IRIS), and included 219 measurements of δ2H and δ18O. Prompted by unexpected isotopic data characterized by a very negative deuterium excess, a subsample of 46 xylem samples and 9 soil water samples were double checked with both analytical techniques. IRMS and IRIS analyses yielded similar data. Therefore, the results reveal that laser spectrometry allows an accurate estimation of xylem and soil water isotopes. The dataset highlights a strong 2H depletion in xylem water for all species. Deuterium does not seem adequate to interpret ecological processes in this dataset given the strong fractionation.

6.
Sci Total Environ ; 699: 134332, 2020 Jan 10.
Article in English | MEDLINE | ID: mdl-31629315

ABSTRACT

Karst environments are unusual because their dry, stony and shallow soils seem to be unfavorable to vegetation, and yet they are often covered with forests. How can trees survive in these environments? Where do they find the water that allows them to survive? This study uses midday and predawn water potentials and xylem water isotopes of branches to assess tree water status and the origin of transpired water. Monitoring was conducted during the summers of 2014 and 2015 in two dissimilar plots of Mediterranean forest located in karst environments. The results show that the three monitored tree species (Abies alba Mill, Fagus sylvatica L, and Quercus ilex L.) use deep water resources present in the karst vadose zone (unsaturated zone) more intensively during drier years. Quercus ilex, a species well- adapted to water stress, which grows at the drier site, uses the deep water resource very early in the summer season. Conversely, the two other species exploit the deep water resource only during severe drought. These results open up new perspectives to a better understanding of ecohydrological equilibrium and to improved water balance modeling in karst forest settings.


Subject(s)
Fagus/physiology , Quercus/physiology , Droughts , Forests , Plant Leaves , Seasons , Soil , Water , Xylem
7.
Genes (Basel) ; 10(9)2019 09 04.
Article in English | MEDLINE | ID: mdl-31487909

ABSTRACT

Finding outlier loci underlying local adaptation is challenging and is best approached by suitable sampling design and rigorous method selection. In this study, we aimed to detect outlier loci (single nucleotide polymorphisms, SNPs) at the local scale by using Aleppo pine (Pinus halepensis), a drought resistant conifer that has colonized many habitats in the Mediterranean Basin, as the model species. We used a nested sampling approach that considered replicated altitudinal gradients for three contrasting sites. We genotyped samples at 294 SNPs located in genomic regions selected to maximize outlier detection. We then applied three different statistical methodologies-Two Bayesian outlier methods and one latent factor principal component method-To identify outlier loci. No SNP was an outlier for all three methods, while eight SNPs were detected by at least two methods and 17 were detected only by one method. From the intersection of outlier SNPs, only one presented an allelic frequency pattern associated with the elevational gradient across the three sites. In a context of multiple populations under similar selective pressures, our results underline the need for careful examination of outliers detected in genomic scans before considering them as candidates for convergent adaptation.


Subject(s)
Acclimatization , Evolution, Molecular , Pinus/genetics , Polymorphism, Single Nucleotide , Altitude , Pinus/physiology , Selection, Genetic
8.
Sci Rep ; 6: 38838, 2016 12 21.
Article in English | MEDLINE | ID: mdl-28000732

ABSTRACT

The forest-savanna ecotone may be very sharp in fire-prone areas. Fire and competition for light play key roles in its maintenance, as forest and savanna tree seedlings are quickly excluded from the other ecosystem. We hypothesized a tradeoff between seedling traits linked to fire resistance and to competition for light to explain these exclusions. We compared growth- and survival-related traits of two savanna and two forest species in response to shading and fire in a field experiment. To interpret the results, we decomposed our broad hypothesis into elementary tradeoffs linked to three constraints, biomass allocation, plant architecture, and shade tolerance, that characterize both savanna and adjacent forest ecosystems. All seedlings reached similar biomasses, but forest seedlings grew taller. Savanna seedlings better survived fire after topkill and required ten times less biomass than forest seedlings to survive. Finally, only savanna seedlings responded to shading. Although results were consistent with the classification of our species as mostly adapted to shade tolerance, competition for light in the open, and fire tolerance, they raised new questions: how could savanna seedlings survive better with a 10-times lower biomass than forest seedlings? Is their shade intolerance sufficient to exclude them from forest understory?

9.
Tree Physiol ; 29(9): 1081-93, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19617592

ABSTRACT

We conducted a comprehensive modelling study to estimate future stem wood production and net ecosystem production (NEP) of Pinus radiata D. Don plantations in south-western Australia, a region that is predicted to undergo severe rainfall reduction in future decades. The process-based model CenW was applied to four locations where it had previously been tested. Climate change scenarios under four emission scenarios for the period from 2005 to 2066 were considered, in addition to simulations under the current climate. Results showed that stem wood production and NEP were little affected by moderate climate change. However, under the most pessimistic climate change scenario (Special Report on Emission Scenarios A2), stem wood production and NEP decreased strongly. These results could be explained by the trade-off between the positive effect of rising atmospheric CO(2) on plant water use efficiency and the negative effects of decreasing rainfall and increasing temperatures. Because changes in heterotrophic respiration (R(H)) lagged behind changes in plant growth, and because R(H) rates were increased by higher temperatures, NEP was more negatively affected than stem wood production. Stem wood production and NEP also strongly interacted with location, with the site currently having the wettest climate being least affected by climatic change. These results suggest that realistic predictions of forest production and carbon sequestration potential in the context of climate change require (1) the use of modelling tools that describe the important feedbacks between environmental variables, plant physiology and soil organic matter decomposition, (2) consideration of a range of climate change scenarios and (3) simulations that account for a gradual climate change to capture transient effects.


Subject(s)
Carbon/metabolism , Climate Change , Pinus/metabolism , Australia , Carbon Dioxide/metabolism , Models, Theoretical , Pinus/growth & development , Rain , Temperature , Water/metabolism , Wood/growth & development , Wood/metabolism
10.
Tree Physiol ; 24(2): 205-16, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14676036

ABSTRACT

Foliage growth, mass- and area-based leaf nitrogen concentrations (Nm and N a) and specific leaf area (SLA) were surveyed during a complete vegetation cycle for two co-occurring savanna tree species: Crossopteryx febrifuga (Afzel. ex G. Don) Benth. and Cussonia arborea A. Rich. The study was conducted in the natural reserve of Lamto, Ivory Coast, on isolated and clumped trees. Leaf flush occurred before the beginning of the rainy season. Maximum leaf area index (LAI), computed on a projected canopy basis for individual trees, was similar (mean of about 4) for both species. Seasonal courses of the ratio of actual to maximum LAI were similar for individuals of the same species, but differed between species. For C. febrifuga, clumped trees reached their maximum LAI before isolated trees. The LAI of C. arborea trees did not differ between clumped and isolated individuals, but maximum LAI was reached about 2 months later than for C. febrifuga. Leaf fall was associated with decreasing soil water content for C. arborea. For C. febrifuga, leaf fall started before the end of the rainy period and was independent of changes in soil water content. These features lead to a partial niche separation in time for light resource acquisition between the two species. Although Nm, N a and SLA decreased with time, SLA and N a decreased later in the vegetation cycle for C. arborea than for C. febrifuga. For both species, N a decreased and SLA increased with decreasing leaf irradiance within the canopy, although effects of light on leaf characteristics did not differ between isolated and clumped trees. Given relationships between N a and photosynthetic capacities previously reported for these species, our results show that C. arborea exhibits higher photosynthetic capacity than C. febrifuga during most of the vegetation cycle and at all irradiances.


Subject(s)
Plant Leaves/anatomy & histology , Trees/anatomy & histology , Araliaceae/anatomy & histology , Araliaceae/physiology , Asteraceae/anatomy & histology , Asteraceae/physiology , Cote d'Ivoire , Nitrogen/physiology , Photosynthesis/physiology , Plant Leaves/physiology , Seasons , Trees/physiology
11.
Funct Plant Biol ; 30(2): 223-237, 2003 Feb.
Article in English | MEDLINE | ID: mdl-32689006

ABSTRACT

To grow, plants need both carbon, which is fixed in photosynthesis, and inorganic nutrients, which are generally obtained from the soil. Much interest currently exists in trying to understand the uptake and storage of carbon by terrestrial ecosystems. This paper investigates to what extent carbon gain and storage are modified by soil nutrient availability. This issue is investigated in relation to both short-term carbon fluxes on the time scale of interannual variability and long-term ecosystem carbon stocks on time scales of several thousand years.We conclude from simulations with an ecosystem model (CenW) that interannual variations in carbon gain can be significantly affected by feedback effects through the nutrient cycle. This feedback effect operates principally through an imbalance between carbon and nutrient dynamics. In years that allow high carbon gain, nutrient supply typically does not match the increased carbon supply so that foliar nutrient concentrations are reduced. This lowers productivity below that which could be expected if foliar nutrient concentration remained the same. The importance of these feedback effects is shown to be greatest at intermediate levels of water availability and nutrient supply, and is relatively more important for net ecosystem carbon exchange than for net primary production.We conclude that the long-term build-up of carbon stocks in ecosystems is often controlled by the rate at which nutrients can be gained. This conclusion is based on data from published studies showing that the slow build-up of carbon matches the gain in nitrogen, phosphorus and sulfur, and on our simulations of system carbon stocks in response to fertiliser addition.The paper concludes with a discussion of the importance and feasibility of including these processes into models at different scales, including the broad continental scale. For modelling net ecosystem exchange for Australia, it is regarded as feasible and desirable to use models that are constrained by these system-internal feedback effects. Such models have already been used for large-scale simulations in Australia and other countries.

SELECTION OF CITATIONS
SEARCH DETAIL
...