Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell ; 187(10): 2485-2501.e26, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38653236

ABSTRACT

Glioma contains malignant cells in diverse states. Here, we combine spatial transcriptomics, spatial proteomics, and computational approaches to define glioma cellular states and uncover their organization. We find three prominent modes of organization. First, gliomas are composed of small local environments, each typically enriched with one major cellular state. Second, specific pairs of states preferentially reside in proximity across multiple scales. This pairing of states is consistent across tumors. Third, these pairwise interactions collectively define a global architecture composed of five layers. Hypoxia appears to drive the layers, as it is associated with a long-range organization that includes all cancer cell states. Accordingly, tumor regions distant from any hypoxic/necrotic foci and tumors that lack hypoxia such as low-grade IDH-mutant glioma are less organized. In summary, we provide a conceptual framework for the organization of cellular states in glioma, highlighting hypoxia as a long-range tissue organizer.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioblastoma/pathology , Glioblastoma/genetics , Glioblastoma/metabolism , Humans , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Spatial Analysis , Transcriptome/genetics , Tumor Microenvironment , Proteomics , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Gene Expression Regulation, Neoplastic
2.
Nature ; 618(7965): 598-606, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37258682

ABSTRACT

Each tumour contains diverse cellular states that underlie intratumour heterogeneity (ITH), a central challenge of cancer therapeutics1. Dozens of recent studies have begun to describe ITH by single-cell RNA sequencing, but each study typically profiled only a small number of tumours and provided a narrow view of transcriptional ITH2. Here we curate, annotate and integrate the data from 77 different studies to reveal the patterns of transcriptional ITH across 1,163 tumour samples covering 24 tumour types. Among the malignant cells, we identify 41 consensus meta-programs, each consisting of dozens of genes that are coordinately upregulated in subpopulations of cells within many tumours. The meta-programs cover diverse cellular processes including both generic (for example, cell cycle and stress) and lineage-specific patterns that we map into 11 hallmarks of transcriptional ITH. Most meta-programs of carcinoma cells are similar to those identified in non-malignant epithelial cells, suggesting that a large fraction of malignant ITH programs are variable even before oncogenesis, reflecting the biology of their cell of origin. We further extended the meta-program analysis to six common non-malignant cell types and utilize these to map cell-cell interactions within the tumour microenvironment. In summary, we have assembled a comprehensive pan-cancer single-cell RNA-sequencing dataset, which is available through the Curated Cancer Cell Atlas website, and leveraged this dataset to carry out a systematic characterization of transcriptional ITH.


Subject(s)
Gene Expression Regulation, Neoplastic , Genetic Heterogeneity , Neoplasms , Single-Cell Gene Expression Analysis , Humans , Epithelial Cells/cytology , Epithelial Cells/metabolism , Neoplasms/classification , Neoplasms/genetics , Neoplasms/pathology , Tumor Microenvironment
3.
Oncogene ; 41(10): 1468-1481, 2022 03.
Article in English | MEDLINE | ID: mdl-35064215

ABSTRACT

Metastases are often the direct cause of death from pancreatic ductal adenocarcinoma (PDAC). The role of genomic alterations (GA) in mediating tropism and metastasis formation by PDAC cells is currently unknown. We aimed to identify GAs predisposing colonization of PDAC cells to the liver and decipher mechanisms enabling this process. In order to reveal specific genes, we studied the frequency of GA in 8,880 local and 7,983 metastatic PDAC samples. We observed differential pattern of GA in the local tumor and specific metastatic sites, with liver metastases characterized by deletion of CDKN2A/B (encoding p16/p15, respectively). The role of CDKN2A/B in promoting liver metastasis was evidenced by enhanced tumorigenic phenotype of p15/p16-deleted PDAC cells when exposed to hepatocytes conditioned media. The liver is characterized by high-ammonia low-glutamine environment and transcriptomic assays indicated unique adaptation of PDAC cells to these conditions, including regulation of genes leading to reduced glutaminolysis, like overexpression of GLUL and reduction in GLS2. Furthermore, metabolic assays indicated an increase in glutamate derived from [U-13C]-glucose in p15/p16-deleted cells. Importantly, these cells thrived under high ammonia condition. These data suggest a unique role for genomic alterations in mediating tropism of PDAC. Among these alterations, p15/16 deletion was identified as a promoter of liver metastases. Further studies indicated a unique role for p15/16 in regulating glutaminolysis. These findings reveal vulnerabilities in PDAC cells, which may pave the way for the development of novel therapeutic strategies aiming at the prevention of liver metastases formation.


Subject(s)
Adenocarcinoma , Carcinoma, Pancreatic Ductal , Liver Neoplasms , Pancreatic Neoplasms , Ammonia/therapeutic use , Carcinoma, Pancreatic Ductal/pathology , Cyclin-Dependent Kinase Inhibitor p15 , Cyclin-Dependent Kinase Inhibitor p16/genetics , Humans , Liver Neoplasms/metabolism , Pancreatic Neoplasms/metabolism , Tropism , Pancreatic Neoplasms
SELECTION OF CITATIONS
SEARCH DETAIL
...