Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Life (Basel) ; 11(6)2021 May 29.
Article in English | MEDLINE | ID: mdl-34072344

ABSTRACT

In the search for life beyond Earth, distinguishing the living from the non-living is paramount. However, this distinction is often elusive, as the origin of life is likely a stepwise evolutionary process, not a singular event. Regardless of the favored origin of life model, an inherent "grayness" blurs the theorized threshold defining life. Here, we explore the ambiguities between the biotic and the abiotic at the origin of life. The role of grayness extends into later transitions as well. By recognizing the limitations posed by grayness, life detection researchers will be better able to develop methods sensitive to prebiotic chemical systems and life with alternative biochemistries.

2.
Life (Basel) ; 9(2)2019 Jun 06.
Article in English | MEDLINE | ID: mdl-31174308

ABSTRACT

Soluble organic compositions of extraterrestrial samples offer valuable insights into the prebiotic organic chemistry of the solar system. This review provides a summary of the techniques commonly used for analyzing amino acids, amines, monocarboxylic acids, aldehydes, and ketones in extraterrestrial samples. Here, we discuss possible effects of various experimental factors (e.g., extraction protocols, derivatization methods, and chromatographic techniques) in order to highlight potential influences on the results obtained from different methodologies. This detailed summary and assessment of current techniques is intended to serve as a basic guide for selecting methodologies for soluble organic analyses and to emphasize some key considerations for future method development.

3.
Meteorit Planet Sci ; 54(1): 142-156, 2019 Jan.
Article in English | MEDLINE | ID: mdl-32440084

ABSTRACT

Compound-specific carbon isotope analysis (δ13C) of meteoritic organic compounds can be used to elucidate the abiotic chemical reactions involved in their synthesis. The soluble organic content of the Murchison carbonaceous chondrite has been extensively investigated over the years, with a focus on the origins of amino acids and the potential role of Strecker-cyanohydrin synthesis in the early solar system. Previous δ13C investigations have targeted α-amino acid and α-hydroxy acid Strecker products and reactant HCN; however, δ13C values for meteoritic aldehydes and ketones (Strecker precursors) have not yet been reported. As such, the distribution of aldehydes and ketones in the cosmos and their role in prebiotic reactions have not been fully investigated. Here, we have applied an optimized O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (PFBHA) derivatization procedure to the extraction, identification and δ13C analysis of carbonyl compounds in the Murchison meteorite. A suite of aldehydes and ketones, dominated by acetaldehyde, propionaldehyde and acetone, were detected in the sample. δ13C values, ranging from -10.0‰ to +66.4‰, were more 13C-depleted than would be expected for aldehydes and ketones derived from the interstellar medium, based on interstellar 12C/13C ratios. These relatively 13C-depleted values suggest that chemical processes taking place in asteroid parent bodies (e.g. oxidation of the IOM) may provide a secondary source of aldehydes and ketones in the solar system. Comparisons between δ13C compositions of meteoritic aldehydes and ketones and other organic compound classes were used to evaluate potential structural relationships and associated reactions, including Strecker synthesis and alteration-driven chemical pathways.

4.
Genome Announc ; 4(4)2016 Jul 14.
Article in English | MEDLINE | ID: mdl-27417846

ABSTRACT

Strains of Sulfitobacter spp., Erythrobacter sp., and Marinobacter sp. were isolated from a polymicrobial culture of the naked (N-type) haptophyte Emiliania huxleyi strain CCMP1516. The genomes encode genes for the production of phytohormones, vitamins, and the consumption of their hosts' metabolic by-products, suggesting symbiotic interactions within this polymicrobial culture.

5.
Genome Announc ; 4(4)2016 Jul 14.
Article in English | MEDLINE | ID: mdl-27417845

ABSTRACT

Strains of Rhodobacteraceae, Sphingomonadales, Alteromonadales, and Bacteroidetes were isolated from a polymicrobial culture of the coccolith-forming (C-type) haptophyte Emiliania huxleyi strain M217. The genomes encode genes for the production of algal growth factors and the consumption of their hosts' metabolic by-products, suggesting that the polymicrobial culture harbors many symbiotic interactions.

6.
Science ; 332(6035): 1304-7, 2011 Jun 10.
Article in English | MEDLINE | ID: mdl-21659601

ABSTRACT

The complex suite of organic materials in carbonaceous chondrite meteorites probably originally formed in the interstellar medium and/or the solar protoplanetary disk, but was subsequently modified in the meteorites' asteroidal parent bodies. The mechanisms of formation and modification are still very poorly understood. We carried out a systematic study of variations in the mineralogy, petrology, and soluble and insoluble organic matter in distinct fragments of the Tagish Lake meteorite. The variations correlate with indicators of parent body aqueous alteration. At least some molecules of prebiotic importance formed during the alteration.

SELECTION OF CITATIONS
SEARCH DETAIL
...