Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Inflamm Intest Dis ; 6(2): 87-100, 2021 May.
Article in English | MEDLINE | ID: mdl-34124180

ABSTRACT

INTRODUCTION: Intestinal fibrosis, characterized by excessive deposition of extracellular matrix proteins, is a common and severe clinical complication of inflammatory bowel disease (IBD). However, the mechanisms underlying fibrosis remain elusive, and currently, there are limited effective pharmacologic treatments that target the development of fibrosis. Hypoxia is one of the key microenvironmental factors influencing intestinal inflammation and has been linked to fibrosis. OBJECTIVE: In the present study, we sought to elucidate the impact of hypoxia on fibrotic gene expression in the intestinal mucosa. METHODS: Human volunteers, IBD patients, and dextran sulphate sodium-treated mice were exposed to hypoxia, and colonic biopsies were collected. The human intestinal epithelial cell line Caco-2, human THP-1 macrophages, and primary human gut fibroblasts were subjected to hypoxia, and changes in fibrotic gene expression were assessed. RESULTS: Human volunteers subjected to hypoxia presented reduced transcriptional levels of fibrotic and epithelial-mesenchymal transition markers in the intestinal mucosa. IBD patients showed a trend towards a decrease in tissue inhibitor of metalloproteinase 1 protein expression. In mice, hypoxic conditions reduced the colonic expression of several collagens and matrix metalloproteinases. Hypoxic Caco-2 cells, THP-1 cells, and primary gut fibroblasts showed a significant downregulation in the expression of fibrotic and tissue remodelling factors. CONCLUSIONS: Stabilization of hypoxia-inducible factors might represent a novel therapeutic approach for the treatment of IBD-associated fibrosis.

2.
Cell Mol Gastroenterol Hepatol ; 7(2): 339-355, 2019.
Article in English | MEDLINE | ID: mdl-30704983

ABSTRACT

BACKGROUND & AIMS: Hypoxia-associated pathways influence the development of inflammatory bowel disease. Adaptive responses to hypoxia are mediated through hypoxia-inducible factors, which are regulated by iron-dependent hydroxylases. Signals reflecting oxygen tension and iron levels in enterocytes regulate iron metabolism. Conversely, iron availability modulates responses to hypoxia. In the present study we sought to elucidate how iron influences the responses to hypoxia in the intestinal epithelium. METHODS: Human subjects were exposed to hypoxia, and colonic biopsy specimens and serum samples were collected. HT-29, Caco-2, and T84 cells were subjected to normoxia or hypoxia in the presence of iron or the iron chelator deferoxamine. Changes in inflammatory gene expression and signaling were assessed by quantitative polymerase chain reaction and Western blot. Chromatin immunoprecipitation was performed using antibodies against nuclear factor (NF)-κB and primers for the promoter of tumor necrosis factor (TNF) and interleukin (IL)1ß. RESULTS: Human subjects presented reduced levels of ferritin in the intestinal epithelium after hypoxia. Hypoxia reduced iron deprivation-associated TNF and IL1ß expression in HT-29 cells through the induction of autophagy. Contrarily, hypoxia triggered TNF and IL1ß expression, and NF-κB activation in Caco-2 and T84 cells. Iron blocked autophagy in Caco-2 cells, while reducing hypoxia-associated TNF and IL1ß expression through the inhibition of NF-κB binding to the promoter of TNF and IL1ß. CONCLUSIONS: Hypoxia promotes iron mobilization from the intestinal epithelium. Hypoxia-associated autophagy reduces inflammatory processes in HT-29 cells. In Caco-2 cells, iron uptake is essential to counteract hypoxia-induced inflammation. Iron mobilization into enterocytes may be a vital protective mechanism in the hypoxic inflamed mucosa.


Subject(s)
Hypoxia/complications , Inflammation/drug therapy , Inflammation/etiology , Intestinal Mucosa/metabolism , Iron/therapeutic use , NF-kappa B/metabolism , Adult , Aged , Aged, 80 and over , Autophagy/drug effects , Caco-2 Cells , HT29 Cells , Humans , Inflammation/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Intestinal Mucosa/drug effects , Middle Aged , Models, Biological , Promoter Regions, Genetic/genetics , RNA Stability/drug effects , RNA Stability/genetics , Transcription Factor RelA/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Young Adult
3.
Nat Commun ; 8(1): 98, 2017 07 24.
Article in English | MEDLINE | ID: mdl-28740109

ABSTRACT

Hypoxia regulates autophagy and nucleotide-binding oligomerization domain receptor, pyrin domain containing (NLRP)3, two innate immune mechanisms linked by mutual regulation and associated to IBD. Here we show that hypoxia ameliorates inflammation during the development of colitis by modulating autophagy and mammalian target of rapamycin (mTOR)/NLRP3 pathway. Hypoxia significantly reduces tumor necrosis factor α, interleukin (IL)-6 and NLRP3 expression, and increases the turnover of the autophagy protein p62 in colon biopsies of Crohn's disease patients, and in samples from dextran sulfate sodium-treated mice and Il-10 -/- mice. In vitro, NF-κB signaling and NLRP3 expression are reduced through hypoxia-induced autophagy. We also identify NLRP3 as a novel binding partner of mTOR. Dimethyloxalylglycine-mediated hydroxylase inhibition ameliorates colitis in mice, downregulates NLRP3 and promotes autophagy. We suggest that hypoxia counteracts inflammation through the downregulation of the binding of mTOR and NLRP3 and activation of autophagy.Hypoxia and HIF-1α activation are protective in mouse models of colitis, and the latter regulates autophagy. Here Cosin-Roger et al. show that hypoxia ameliorates intestinal inflammation in Crohn's patients and murine colitis models by inhibiting mTOR/NLRP3 pathway and promoting autophagy.


Subject(s)
Colitis, Ulcerative/metabolism , Crohn Disease/metabolism , Inflammation/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , TOR Serine-Threonine Kinases/metabolism , Animals , Autophagy/physiology , Colitis/chemically induced , Dextran Sulfate/toxicity , Down-Regulation , Gene Expression Regulation/physiology , Humans , Interleukin-10/genetics , Interleukin-10/metabolism , Mice , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , RNA, Small Interfering , TOR Serine-Threonine Kinases/genetics
4.
Cell Mol Gastroenterol Hepatol ; 2(6): 796-810, 2016 Nov.
Article in English | MEDLINE | ID: mdl-28174749

ABSTRACT

BACKGROUND & AIMS: A novel family of proton-sensing G-protein-coupled receptors, including ovarian cancer G-protein-coupled receptor 1 (OGR1) (GPR68) has been identified to play a role in pH homeostasis. Hypoxia is known to change tissue pH as a result of anaerobic glucose metabolism through the stabilization of hypoxia-inducible factor-1α. We investigated how hypoxia regulates the expression of OGR1 in the intestinal mucosa and associated cells. METHODS: OGR1 expression in murine tumors, human colonic tissue, and myeloid cells was determined by quantitative reverse-transcription polymerase chain reaction. The influence of hypoxia on OGR1 expression was studied in monocytes/macrophages and intestinal mucosa of inflammatory bowel disease (IBD) patients. Changes in OGR1 expression in MonoMac6 (MM6) cells under hypoxia were determined upon stimulation with tumor necrosis factor (TNF), in the presence or absence of nuclear factor-κB (NF-κB) inhibitors. To study the molecular mechanisms involved, chromatin immunoprecipitation analysis of the OGR1 promoter was performed. RESULTS: OGR1 expression was significantly higher in tumor tissue compared with normal murine colon tissue. Hypoxia positively regulated the expression of OGR1 in MM6 cells, mouse peritoneal macrophages, primary human intestinal macrophages, and colonic tissue from IBD patients. In MM6 cells, hypoxia-enhanced TNF-induced OGR1 expression was reversed by inhibition of NF-κB. In addition to the effect of TNF and hypoxia, OGR1 expression was increased further at low pH. Chromatin immunoprecipitation analysis showed that HIF-1α, but not NF-κB, binds to the promoter of OGR1 under hypoxia. CONCLUSIONS: The enhancement of TNF- and hypoxia-induced OGR1 expression under low pH points to a positive feed-forward regulation of OGR1 activity in acidic conditions, and supports a role for OGR1 in the pathogenesis of IBD.

SELECTION OF CITATIONS
SEARCH DETAIL
...