Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Environ Au ; 3(4): 195-208, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37483305

ABSTRACT

Since the beginning of the industrial revolution, humans have burned enormous quantities of coal, oil, and natural gas, rivaling nature's elemental cycles of C, N, and S. The result has been a disruption in a steady state of CO2 and other greenhouse gases in the atmosphere, a warming of the planet, and changes in master variables (temperature, pH, and pε) of the sea affecting critical physical, chemical, and biological reactions. Humans have also produced copious quantities of N and P fertilizers producing widespread coastal hypoxia and low dissolved oxygen conditions, which now threaten even the open ocean. Consequently, our massive alteration of state variables diminishes coral reefs, fisheries, and marine ecosystems, which are the foundation of life on Earth. We point to a myriad of actions and alternatives which will help to stem the tide of climate change and its effects on the sea while, at the same time, creating a more sustainable future for humans and ecosystems alike.

2.
Environ Sci Technol ; 56(23): 16602-16610, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36399658

ABSTRACT

Understanding plant biology and related microbial ecology as a means to phytoremediate soil and groundwater contamination has broadened and advanced the field of environmental engineering and science over the past 30 years. Using plants to transform and degrade xenobiotic organic pollutants delivers new methods for environmental restoration. Manipulations of the plant microbiome through bioaugmentation, endophytes, adding various growth factors, genetic modification, and/or selecting the microbial community via insertion of probiotics or phages for gene transfer are future areas of research to further expand this green, cost-effective, aesthetically pleasing technology─phytoremediation.


Subject(s)
Microbiota , Soil Pollutants , Biodegradation, Environmental , Soil Pollutants/metabolism , Plants/metabolism , Soil
3.
Sci Total Environ ; 744: 140823, 2020 Nov 20.
Article in English | MEDLINE | ID: mdl-32721670

ABSTRACT

1,4-Dioxane is a highly mobile and persistent groundwater pollutant that often forms large dilute plumes. Because of this, utilizing aggressive pump-and-treat and ex-situ technologies such as advanced oxidation can be prohibitively expensive. In this study, we bioaugmented the poplar rhizosphere with dioxane-degrading bacteria Mycobacterium dioxanotrophicus PH-06 or Pseudonocardia dioxanivorans CB1190 to enhance treatment of 1,4-dioxane in bench-scale experiments. All treatments tested removed 10 mg/L dioxane to near health advisory levels (<4 µg/L). However, PH-06-bioaugmented poplar significantly outperformed all other treatments, reaching <4 µg/L in only 13 days. Growth curve experiments confirmed that PH-06 could not utilize root extract as an auxiliary carbon source for growth. Despite this limitation, our findings suggest that PH-06 is a strong bioaugmentation candidate to enhance the treatment of dioxane by phytoremediation. In addition, we confirmed that CB1190 could utilize both 1,4-dioxane and root extract as substrates. Finally, we demonstrated the large-scale production of these two strains for use in the field. Overall, this study shows that combining phytoremediation and bioaugmentation is an attractive strategy to treat dioxane-contaminated groundwater to low risk-based concentrations (~1 µg/L).


Subject(s)
Groundwater , Water Pollutants, Chemical , Actinobacteria , Biodegradation, Environmental , Dioxanes , Mycobacterium , Pseudonocardia , Rhizosphere
SELECTION OF CITATIONS
SEARCH DETAIL
...