Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 14(17)2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36077787

ABSTRACT

T-cell-based cellular therapy was first approved in lymphoid malignancies (B-cell acute lymphoblastic leukemia and large B-cell lymphoma) and expanding its investigation and application both in hematological and non-hematological malignancies. Two anti-BCMA (B cell maturation antigen) CAR (Chimeric Antigen Receptor) T-cell therapies have been recently approved for relapsed and refractory multiple myeloma with excellent efficacy even in the heavily pre-treated patient population. This new therapeutic approach significantly changes our practice; however, there is still room for further investigation to optimize antigen receptor engineering, cell harvest/selection, treatment sequence, etc. They are also associated with unique adverse events, especially CRS (cytokine release syndrome) and ICANS (immune effector cell-associated neurotoxicity syndrome), which are not seen with other anti-myeloma therapies and require expertise for management and prevention. Other T-cell based therapies such as TCR (T Cell Receptor) engineered T-cells and non-genetically engineered adoptive T-cell transfers (Vγ9 Vδ2 T-cells and Marrow infiltrating lymphocytes) are also actively studied and worth attention. They can potentially overcome therapeutic challenges after the failure of CAR T-cell therapy through different mechanisms of action. This review aims to provide readers clinical data of T-cell-based therapies for multiple myeloma, management of unique toxicities and ongoing investigation in both clinical and pre-clinical settings.

2.
Best Pract Res Clin Haematol ; 34(3): 101306, 2021 09.
Article in English | MEDLINE | ID: mdl-34625232

ABSTRACT

Important advances in the treatment landscape of multiple myeloma (MM) had been seen over the past two decades leading to improved overall survival but despite the progress multiple myeloma is still considered incurable and the prognosis of the pentarefractory patients have been poor. The development of immunotherapy and in particular adoptive cell therapy with chimeric antigen receptor (CAR) T cells have dramatically improved the outcomes of heavily pretreated relapsed/refractory MM patients. The bulk of CAR T-cell constructs currently in clinical development target the B-cell maturation antigen (BCMA) and to date only idecabtagene vicleucel (ide-cel) is approved by the Food and Drug Administration (FDA) for commercial use in adult patients with relapsed or refractory MM based on the promising clinical responses and positive safety record shown in the pivotal KarMMa study. This review focus on the development of CAR T-cell therapy for multiple myeloma as well as a brief review of the mechanisms of resistance, toxicity and new approaches under development.


Subject(s)
Multiple Myeloma , Receptors, Chimeric Antigen , B-Cell Maturation Antigen , Humans , Immunotherapy, Adoptive , Multiple Myeloma/therapy , T-Lymphocytes
3.
Expert Opin Investig Drugs ; 22(6): 723-38, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23647051

ABSTRACT

INTRODUCTION: Cyclin-dependent kinases (CDKs) regulate cell cycle progression. Certain CDKs (e.g., CDK7, CDK9) also control cellular transcription. Consequently, CDKs represent attractive targets for anticancer drug development, as their aberrant expression is common in diverse malignancies, and CDK inhibition can trigger apoptosis. CDK inhibition may be particularly successful in hematologic malignancies, which are more sensitive to inhibition of cell cycling and apoptosis induction. AREAS COVERED: A number of CDK inhibitors, ranging from pan-CDK inhibitors such as flavopiridol (alvocidib) to highly selective inhibitors of specific CDKs (e.g., CDK4/6), such as PD0332991, that are currently in various phases of development, are profiled in this review. Flavopiridol induces cell cycle arrest, and globally represses transcription via CDK9 inhibition. The latter may represent its major mechanism of action via down-regulation of multiple short-lived proteins. In early phase trials, flavopiridol has shown encouraging efficacy across a wide spectrum of hematologic malignancies. Early results with dinaciclib and PD0332991 also appear promising. EXPERT OPINION: In general, the antitumor efficacy of CDK inhibitor monotherapy is modest, and rational combinations are being explored, including those involving other targeted agents. While selective CDK4/6 inhibition might be effective against certain malignancies, broad-spectrum CDK inhibition will likely be required for most cancers.


Subject(s)
Antineoplastic Agents/pharmacology , Cyclin-Dependent Kinases/antagonists & inhibitors , Hematologic Neoplasms/drug therapy , Animals , Apoptosis/drug effects , Cell Cycle/drug effects , Drug Design , Hematologic Neoplasms/pathology , Humans , Molecular Targeted Therapy , Protein Kinase Inhibitors/pharmacology
4.
Cancer Res ; 72(16): 4225-37, 2012 Aug 15.
Article in English | MEDLINE | ID: mdl-22693249

ABSTRACT

BH3 mimetic drugs induce cell death by antagonizing the activity of antiapoptotic Bcl-2 family proteins. Cyclin-dependent kinase (CDK) inhibitors that function as transcriptional repressors downregulate the Bcl-2 family member Mcl-1 and increase the activity of selective BH3 mimetics that fail to target this protein. In this study, we determined whether CDK inhibitors potentiate the activity of pan-BH3 mimetics directly neutralizing Mcl-1. Specifically, we evaluated interactions between the prototypical pan-CDK inhibitor flavopiridol and the pan-BH3 mimetic obatoclax in multiple myeloma (MM) cells in which Mcl-1 is critical for survival. Coadministration of flavopiridol and obatoclax synergistically triggered apoptosis in both drug-naïve and drug-resistant MM cells. Mechanistic investigations revealed that flavopiridol inhibited Mcl-1 transcription but increased transcription of Bim and its binding to Bcl-2/Bcl-xL. Obatoclax prevented Mcl-1 recovery and caused release of Bim from Bcl-2/Bcl-xL and Mcl-1, accompanied by activation of Bax/Bak. Whether administered singly or in combination with obatoclax, flavopiridol also induced upregulation of multiple BH3-only proteins, including BimEL, BimL, Noxa, and Bik/NBK. Notably, short hairpin RNA knockdown of Bim or Noxa abrogated lethality triggered by the flavopiridol/obatoclax combination in vitro and in vivo. Together, our findings show that CDK inhibition potentiates pan-BH3 mimetic activity through a cooperative mechanism involving upregulation of BH3-only proteins with coordinate downregulation of their antiapoptotic counterparts. These findings have immediate implications for the clinical trial design of BH3 mimetic-based therapies that are presently being studied intensively for the treatment of diverse hematopoietic malignancies, including lethal multiple myeloma.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cyclin-Dependent Kinases/antagonists & inhibitors , Flavonoids/pharmacology , Multiple Myeloma/drug therapy , Piperidines/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyrroles/pharmacology , Animals , Apoptosis/drug effects , Apoptosis Regulatory Proteins/metabolism , Bcl-2-Like Protein 11 , Biomimetic Materials/administration & dosage , Biomimetic Materials/pharmacology , Cell Line, Tumor , Drug Synergism , Flavonoids/administration & dosage , Humans , Indoles , Membrane Proteins/metabolism , Mice , Mice, Inbred NOD , Mice, Nude , Mice, SCID , Mitochondria/drug effects , Multiple Myeloma/enzymology , Myeloid Cell Leukemia Sequence 1 Protein , Peptide Fragments/metabolism , Piperidines/administration & dosage , Protein Kinase Inhibitors/administration & dosage , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Pyrroles/administration & dosage , Up-Regulation/drug effects , Xenograft Model Antitumor Assays , bcl-X Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...