Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Am J Nephrol ; 54(7-8): 329-336, 2023.
Article in English | MEDLINE | ID: mdl-37253348

ABSTRACT

INTRODUCTION: Kidney stone type varies with age, sex, season, and medical conditions. Lower estimate glomerular filtration rate (eGFR) leads to changes in urine chemistry, and risk factors for kidney stones are thought to vary by stone type. We explore the association between eGFR, urine risk factors, and common stone compositions. METHODS: This was a retrospective cohort study of 811 kidney stone patients seen at Yale Medicine between 1994 and 2021 with serum chemistries and 24-h urine chemistries matched within 1 year of baseline stone analysis. Patients' eGFR was calculated using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) 2021 equation. Demographics and medical history were compared by χ2 tests. 24-h urine chemistries and stone analyses were analyzed by one-way ANOVA. Linear regressions were performed to control for demographics, comorbidities, and stone composition. RESULTS: With lower eGFR, the proportion of calcium stones declined while uric acid (UA) stones increased. On univariable analysis, lower eGFR was associated with lower urine pH, calcium, citrate, UA, magnesium, phosphorus, and ammonium. On multivariable analysis, controlling for age, sex, ethnicity, body mass index, comorbidities, and stone type, these factors remained significant. Stone formers with lower eGFR had elevated supersaturation for UA, but reduced supersaturations for calcium-containing stones. Though urine oxalate was significant on univariable analysis, it was not on multivariable analysis. CONCLUSION: Changes in urine parameters are strongly correlated with eGFR regardless of stone type. Renal function may play a key role in modulating kidney stone risk factors. Strategies to mitigate stone risk may need to vary with kidney function, especially when patient urine or stone composition data are unavailable.


Subject(s)
Calcium , Kidney Calculi , Humans , Retrospective Studies , Kidney Calculi/epidemiology , Kidney Calculi/etiology , Risk Factors , Kidney
3.
Alcohol Clin Exp Res ; 45(11): 2231-2245, 2021 11.
Article in English | MEDLINE | ID: mdl-34585391

ABSTRACT

BACKGROUND: Few studies have examined the association between APOE genotype and alcohol use. Although some of these studies have reported outcomes associated with a history of drinking, none have examined alcohol-seeking behavior. In addition, no preclinical studies have examined alcohol use as a function of APOE genotype with or without traumatic brain injury. METHODS: Male and female human APOE3- and APOE4-targeted replacement (TR) mice were used to assess voluntary alcohol seeking longitudinally using a 2-bottle choice paradigm conducted within the automated IntelliCage system prior to and following repeated mild TBI (rmTBI). Following an acquisition phase in which the concentration of ethanol (EtOH) was increased to 12%, a variety of drinking paradigms that included extended alcohol access (EAA1 and EAA2), alcohol deprivation effect (ADE), limited access drinking in the dark (DID), and progressive ratio (PR) were used to assess alcohol-seeking behavior. Additional behavioral tasks were performed to measure cognitive function and anxiety-like behavior. RESULTS: All groups readily consumed increasing concentrations of EtOH (4-12%) during the acquisition phase. During the EAA1 period (12% EtOH), there was a significant genotype effect in both males and females for EtOH preference. Following a 3-week abstinence period, mice received sham or rmTBI resulting in a genotype- and sex-independent main effect of rmTBI on the recovery of righting reflex and a main effect of rmTBI on spontaneous home-cage activity in females only. Reintroduction of 12% EtOH (EAA2) resulted in a significant effect genotype for alcohol preference in males with APOE4 mice displaying increased preference and motivation for alcohol compared with APOE3 mice independent of TBI while in females, there was a significant genotype × TBI interaction under the ADE and DID paradigms. Finally, there was a main effect of rmTBI on increased risk-seeking behavior in both sexes, but no effect on spatial learning or cognitive flexibility. CONCLUSION: These results suggest that sex and APOE genotype play a significant role in alcohol consumption and may subsequently influence long-term recovery following traumatic brain insults.


Subject(s)
Alcohol Drinking/metabolism , Apolipoproteins E/metabolism , Behavior, Addictive/metabolism , Genotype , Alcohol Drinking/genetics , Animals , Apolipoproteins E/genetics , Behavior, Addictive/genetics , Conditioning, Classical/physiology , Female , Humans , Male , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...