Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurosci ; 17: 1212791, 2023.
Article in English | MEDLINE | ID: mdl-37869506

ABSTRACT

Introduction: Chemotherapy-induced cognitive impairment colloquially referred to as chemobrain is a poorly understood phenomenon affecting a highly variable proportion of patients with breast cancer. Here we investigate the association between anxiety and despair-like behaviors in mice treated with cyclophosphamide, methotrexate, and fluorouracil (CMF) along with host histological, proteomic, gene expression, and gut microbial responses. Methods: Forced swim and sociability tests were used to evaluate depression and despair-like behaviors. The tandem mass tag (TMT) proteomics approach was used to assess changes in the neural protein network of the amygdala and hippocampus. The composition of gut microbiota was assessed through 16S rRNA gene sequencing. Finally, quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to evaluate changes in intestinal gap junction markers. Results and discussion: We observed that CMF induced social and despair-like behavior in mice 96 hours following treatment. Proteomic analysis identified changes in various proteins related to progressive neurological disease, working memory deficit, primary anxiety disorder, and gene expression revealing increases in NMDA and AMPA receptors in both the hippocampus and the amygdala because of CMF treatment. These changes finally, we observed immediate changes in the microbial population after chemotherapy treatment, with a notable abundance of Muribaculaceae and Romboutsia which may contribute to changes seen in the gut.

2.
Front Neurosci ; 16: 908632, 2022.
Article in English | MEDLINE | ID: mdl-36561122

ABSTRACT

Space exploration has advanced substantially over recent decades and plans to increase the duration of deep space missions are in preparation. One of the primary health concerns is potential damage to the central nervous system (CNS), resulting in loss of cognitive abilities and function. The majority of ground-based research on space radiation-induced health risks has been conducted using single particle simulations, which do not effectively model real-world scenarios. Thus, to improve the safety of space missions, we must expand our understanding of the effects of simulated galactic cosmic rays (GCRs) on the CNS. To assess the effects of low-dose GCR, we subjected 6-month-old male BALB/c mice to 50 cGy 5-beam simplified GCR spectrum (1H, 28Si, 4He, 16O, and 56Fe) whole-body irradiation at the NASA Space Radiation Laboratory. Animals were tested for cognitive performance with Y-maze and Morris water maze tests 3 months after irradiation. Irradiated animals had impaired short-term memory and lacked spatial memory retention on day 5 of the probe trial. Glial cell analysis by flow cytometry showed no significant changes in oligodendrocytes, astrocytes, microglia or neural precursor cells (NPC's) between the sham group and GCR group. Bone marrow cytogenetic data showed a significant increase in the frequency of chromosomal aberrations after GCR exposure. Finally, tandem mass tag proteomics identified 3,639 proteins, 113 of which were differentially expressed when comparing sham versus GCR exposure (fold change > 1.5; p < 0.05). Our data suggest exposure to low-dose GCR induces cognitive deficits by impairing short-term memory and spatial memory retention.

3.
Toxics ; 10(9)2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36136472

ABSTRACT

The environment outside the Earth's protective magnetosphere is a much more threatening and complex space environment. The dominant causes for radiation exposure, solar particle events and galactic cosmic rays, contain high-energy protons. In space, astronauts need healthy and highly functioning cognitive abilities, of which the hippocampus plays a key role. Therefore, understanding the effects of 1H exposure on hippocampal-dependent cognition is vital for developing mitigative strategies and protective countermeasures for future missions. To investigate these effects, we subjected 6-month-old female CD1 mice to 0.75 Gy fractionated 1H (250 MeV) whole-body irradiation at the NASA Space Radiation Laboratory. The cognitive performance of the mice was tested 3 months after irradiation using Y-maze and Morris water maze tests. Both sham-irradiated and 1H-irradiated mice significantly preferred exploration of the novel arm compared to the familiar and start arms, indicating intact spatial and short-term memory. Both groups statistically spent more time in the target quadrant, indicating spatial memory retention. There were no significant differences in neurogenic and gliogenic cell counts after irradiation. In addition, proteomic analysis revealed no significant upregulation or downregulation of proteins related to behavior, neurological disease, or neural morphology. Our data suggests 1H exposure does not impair hippocampal-dependent spatial or short-term memory in female mice.

4.
Int J Mol Sci ; 23(4)2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35216124

ABSTRACT

Advances in the early diagnosis and treatment have led to increases in breast cancer survivorship. Survivors report cognitive impairment symptoms such as loss of concentration and learning and memory deficits which significantly reduce the patient's quality of life. Additional therapies are needed to prevent these side effects and, the precise mechanisms of action responsible are not fully elucidated. However, increasing evidence points toward the use of neuroprotective compounds with antioxidants and anti-inflammatory properties as tools for conserving learning and memory. Here, we examine the ability of piperlongumine (PL), an alkaloid known to have anti-inflammatory and antioxidant effects, to play a neuroprotective role in 16-week-old female C57BL/6J mice treated with a common breast cancer regimen of doxorubicin, cyclophosphamide, and docetaxel (TAC). During social memory testing, TAC-treated mice exhibited impairment, while TAC/PL co-treated mice did not exhibit measurable social memory deficits. Proteomics analysis showed ERK1/2 signaling is involved in TAC and TAC/PL co-treatment. Reduced Nrf2 mRNA expression was also observed. mRNA levels of Gria2 were increased in TAC treated mice and reduced in TAC/PL co-treated mice. In this study, PL protects against social memory impairment when co-administered with TAC via multifactorial mechanisms involving oxidative stress and synaptic plasticity.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/adverse effects , Chemotherapy-Related Cognitive Impairment/drug therapy , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/drug therapy , Dioxolanes/pharmacology , Neuroprotective Agents/pharmacology , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antioxidants/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Chemotherapy-Related Cognitive Impairment/metabolism , Cognitive Dysfunction/metabolism , Female , Inflammation/drug therapy , Inflammation/metabolism , Mice , Mice, Inbred C57BL , Quality of Life , RNA, Messenger/metabolism , Signal Transduction/drug effects
5.
J Vis Exp ; (176)2021 10 21.
Article in English | MEDLINE | ID: mdl-34747412

ABSTRACT

This neural dissociation protocol (an adaptation of the protocol accompanying a commercial adult brain dissociation kit) optimizes tissue processing in preparation for detailed downstream analysis such as flow cytometry or single-cell sequencing. Neural dissociation can be conducted via mechanical dissociation (such as using filters, chopping techniques, or pipette trituration), enzymatic digestion, or a combination thereof. The delicate nature of neuronal cells can complicate efforts to obtain the highly viable, true single-cell suspension with minimal cellular debris that is required for single-cell analysis. The data demonstrate that this combination of automated mechanical dissociation and enzymatic digestion consistently yields a highly viable (>90%) single-cell suspension, overcoming the aforementioned difficulties. While a few of the steps require manual dexterity, these steps lessen sample handling and potential cell loss. This manuscript details each step of the process to equip other laboratories to successfully dissociate small quantities of neural tissue in preparation for downstream analysis.


Subject(s)
Brain , Hippocampus , Animals , Cell Separation/methods , Flow Cytometry/methods , Mice , Neurons
6.
Int J Mol Sci ; 22(21)2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34769141

ABSTRACT

Space is a high-stress environment. One major risk factor for the astronauts when they leave the Earth's magnetic field is exposure to ionizing radiation from galactic cosmic rays (GCR). Several adverse changes occur in mammalian anatomy and physiology in space, including bone loss. In this study, we assessed the effects of simplified GCR exposure on skeletal health in vivo. Three months following exposure to 0.5 Gy total body simulated GCR, blood, bone marrow and tissue were collected from 9 months old male mice. The key findings from our cell and tissue analysis are (1) GCR induced femoral trabecular bone loss in adult mice but had no effect on spinal trabecular bone. (2) GCR increased circulating osteoclast differentiation markers and osteoclast formation but did not alter new bone formation or osteoblast differentiation. (3) Steady-state levels of mitochondrial reactive oxygen species, mitochondrial and non-mitochondrial respiration were increased without any changes in mitochondrial mass in pre-osteoclasts after GCR exposure. (4) Alterations in substrate utilization following GCR exposure in pre-osteoclasts suggested a metabolic rewiring of mitochondria. Taken together, targeting radiation-mediated mitochondrial metabolic reprogramming of osteoclasts could be speculated as a viable therapeutic strategy for space travel induced bone loss.


Subject(s)
Cancellous Bone/radiation effects , Cosmic Radiation/adverse effects , Mitochondria/radiation effects , Osteoclasts/radiation effects , Osteogenesis/radiation effects , Animals , Male , Mice, Inbred BALB C , Mitochondria/metabolism
7.
Antioxidants (Basel) ; 10(9)2021 Aug 29.
Article in English | MEDLINE | ID: mdl-34573015

ABSTRACT

In the past few years, breast cancer has become the most prevalent type of cancer. The majority of patients receive combinatorial chemotherapy treatments, which may result in increased risk of developing drug resistance, a reduced quality of life, and substantial side effects. Treatment modalities that could lessen the physical toll of standard treatments or act in synergy with chemotherapeutic treatments would benefit women worldwide. Research into tocotrienols has thus far demonstrated their potential to be such an agent, with tocotrienols surpassing the pharmacological potential of tocopherols. Further research using in vitro and preclinical breast cancer models to support clinical trials is needed. This review uses bibliometric analysis to highlight this gap in research and summarizes the current and future landscape of tocotrienols as an anti-breast cancer agent.

8.
Brain Res ; 1760: 147397, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33705788

ABSTRACT

Breast cancer is the most commonly diagnosed cancer among women and it is estimated that about 30% of newly diagnosed cancers in women will be breast cancers. While advancements in treating breast cancer have led to an average 5-year survival rate of 90%, many survivors experience cognitive impairments as a result of chemotherapy treatment. Doxorubicin, cyclophosphamide, and docetaxel (TAC) are commonly administered as breast cancer treatments; however, there are few studies that have tested the cognitive effects of TAC. In the current study, 12-week-old female C57BL/6 mice received 4 weekly intraperitoneal injections of either saline or a combination therapy of doxorubicin and cyclophosphamide followed by 4 weekly docetaxel injections. Four weeks after the last injection, mice were tested for hippocampus-dependent cognitive performance in the Y-maze and the Morris water maze. During Y-maze testing, mice exposed to TAC exhibited impairment. During the water maze assessment, all animals were able to locate the visible and hidden platform locations. However, mice that received the TAC presented with a significant impairment in spatial memory retention on the probe trial days. TAC treatment significantly decreases the dendritic complexity of arborization in the dentate gyrus region of the hippocampus. In addition, comparative proteomic analysis revealed downregulation of proteins within key metabolic and signaling pathways associated with cognitive dysfunction, such as oxidative phosphorylation, ephrin signaling, and calcium signaling.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/toxicity , Cognitive Dysfunction/chemically induced , Cyclophosphamide/toxicity , Docetaxel/toxicity , Doxorubicin/toxicity , Animals , Female , Mice , Mice, Inbred C57BL
9.
Materials (Basel) ; 13(13)2020 Jun 27.
Article in English | MEDLINE | ID: mdl-32605069

ABSTRACT

Artificial extracellular matrices (aECMs) are an extension of biomaterials that were developed as in-vitro model environments for tissue cells that mimic the native in vivo target tissues' structure. This bibliometric analysis evaluated the research productivity regarding aECM based on tissue engineering technology. The Web of Science citation index was examined for articles published from 1990 through 2019 using three distinct aECM­related topic sets. Data were also visualized using network analyses (VOSviewer). Terms related to in-vitro, scaffolds, collagen, hydrogels, and differentiation were reoccurring in the aECM­related literature over time. Publications with terms related to a clinical direction (wound healing, stem cells, artificial skin, in­vivo, and bone regeneration) have steadily increased, as have the number of countries and institutions involved in the artificial extracellular matrix. As progress with 3D scaffolds continues to advance, it will become the most promising technology to provide a therapeutic option to repair or replace damaged tissue.

SELECTION OF CITATIONS
SEARCH DETAIL
...