Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 14841, 2021 07 21.
Article in English | MEDLINE | ID: mdl-34290299

ABSTRACT

High-grade serous ovarian cancers (HGSOC) represent the most common subtype of ovarian malignancies. Due to the frequency of late-stage diagnosis and high rates of recurrence following standard of care treatments, novel therapies are needed to promote durable responses. We investigated the anti-tumor activity of CD3 T cell engaging bispecific antibodies (TCBs) directed against the PAX8 lineage-driven HGSOC tumor antigen LYPD1 and demonstrated that anti-LYPD1 TCBs induce T cell activation and promote in vivo tumor growth inhibition in LYPD1-expressing HGSOC. To selectively target LYPD1-expressing tumor cells with high expression while sparing cells with low expression, we coupled bivalent low-affinity anti-LYPD1 antigen-binding fragments (Fabs) with the anti-CD3 scFv. In contrast to the monovalent anti-LYPD1 high-affinity TCB (VHP354), the bivalent low-affinity anti-LYPD1 TCB (QZC131) demonstrated antigen density-dependent selectivity and showed tolerability in cynomolgus monkeys at the maximum dose tested of 3 mg/kg. Collectively, these data demonstrate that bivalent TCBs directed against LYPD1 have compelling efficacy and safety profiles to support its use as a treatment for high-grade serous ovarian cancers.


Subject(s)
Antibodies, Bispecific/therapeutic use , Immunotherapy/methods , Ovarian Neoplasms/pathology , Ovarian Neoplasms/therapy , PAX8 Transcription Factor/immunology , T-Lymphocytes/immunology , Tumor Suppressor Proteins/immunology , Animals , CD3 Complex/immunology , Female , GPI-Linked Proteins/immunology , Macaca fascicularis , Mice , Neoplasm Grading , Xenograft Model Antitumor Assays
2.
Nat Commun ; 11(1): 6315, 2020 12 09.
Article in English | MEDLINE | ID: mdl-33298926

ABSTRACT

Despite the increasing interest in targeting stromal elements of the tumor microenvironment, we still face tremendous challenges in developing adequate therapeutics to modify the tumor stromal landscape. A major obstacle to this is our poor understanding of the phenotypic and functional heterogeneity of stromal cells in tumors. Herein, we perform an unbiased interrogation of tumor mesenchymal cells, delineating the co-existence of distinct subsets of cancer-associated fibroblasts (CAFs) in the microenvironment of murine carcinomas, each endowed with unique phenotypic features and functions. Furthermore, our study shows that neutralization of TGFß in vivo leads to remodeling of CAF dynamics, greatly reducing the frequency and activity of the myofibroblast subset, while promoting the formation of a fibroblast population characterized by strong response to interferon and heightened immunomodulatory properties. These changes correlate with the development of productive anti-tumor immunity and greater efficacy of PD1 immunotherapy. Along with providing the scientific rationale for the evaluation of TGFß and PD1 co-blockade in the clinical setting, this study also supports the concept of plasticity of the stromal cell landscape in tumors, laying the foundation for future investigations aimed at defining pathways and molecules to program CAF composition for cancer therapy.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cancer-Associated Fibroblasts/immunology , Carcinoma/drug therapy , Interferon-beta/immunology , Transforming Growth Factor beta/antagonists & inhibitors , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cancer-Associated Fibroblasts/drug effects , Carcinoma/immunology , Carcinoma/pathology , Cell Line, Tumor/transplantation , Cell Plasticity/drug effects , Cell Plasticity/immunology , Disease Models, Animal , Drug Synergism , Female , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Mice , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Stromal Cells/drug effects , Stromal Cells/immunology , Transforming Growth Factor beta/metabolism , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...