Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
J Clin Invest ; 129(8): 3171-3184, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31264976

ABSTRACT

Arrhythmogenic cardiomyopathy (ACM) is an inherited arrhythmia syndrome characterized by severe structural and electrical cardiac phenotypes, including myocardial fibrofatty replacement and sudden cardiac death. Clinical management of ACM is largely palliative, owing to an absence of therapies that target its underlying pathophysiology, which stems partially from our limited insight into the condition. Following identification of deceased ACM probands possessing ANK2 rare variants and evidence of ankyrin-B loss of function on cardiac tissue analysis, an ANK2 mouse model was found to develop dramatic structural abnormalities reflective of human ACM, including biventricular dilation, reduced ejection fraction, cardiac fibrosis, and premature death. Desmosomal structure and function appeared preserved in diseased human and murine specimens in the presence of markedly abnormal ß-catenin expression and patterning, leading to identification of a previously unknown interaction between ankyrin-B and ß-catenin. A pharmacological activator of the WNT/ß-catenin pathway, SB-216763, successfully prevented and partially reversed the murine ACM phenotypes. Our findings introduce what we believe to be a new pathway for ACM, a role of ankyrin-B in cardiac structure and signaling, a molecular link between ankyrin-B and ß-catenin, and evidence for targeted activation of the WNT/ß-catenin pathway as a potential treatment for this disease.


Subject(s)
Ankyrins , Arrhythmogenic Right Ventricular Dysplasia , Myocardium , Wnt Signaling Pathway , Animals , Ankyrins/genetics , Ankyrins/metabolism , Arrhythmogenic Right Ventricular Dysplasia/genetics , Arrhythmogenic Right Ventricular Dysplasia/metabolism , Arrhythmogenic Right Ventricular Dysplasia/pathology , Disease Models, Animal , Female , Humans , Indoles/pharmacology , Male , Maleimides/pharmacology , Mice , Mice, Knockout , Myocardium/metabolism , Myocardium/pathology , beta Catenin/genetics , beta Catenin/metabolism
3.
J Biol Chem ; 294(24): 9576-9591, 2019 06 14.
Article in English | MEDLINE | ID: mdl-31064843

ABSTRACT

Spectrins are cytoskeletal proteins essential for membrane biogenesis and regulation and serve critical roles in protein targeting and cellular signaling. αII spectrin (SPTAN1) is one of two α spectrin genes and αII spectrin dysfunction is linked to alterations in axon initial segment formation, cortical lamination, and neuronal excitability. Furthermore, human αII spectrin loss-of-function variants cause neurological disease. As global αII spectrin knockout mice are embryonic lethal, the in vivo roles of αII spectrin in adult heart are unknown and untested. Here, based on pronounced alterations in αII spectrin regulation in human heart failure we tested the in vivo roles of αII spectrin in the vertebrate heart. We created a mouse model of cardiomyocyte-selective αII spectrin-deficiency (cKO) and used this model to define the roles of αII spectrin in cardiac function. αII spectrin cKO mice displayed significant structural, cellular, and electrical phenotypes that resulted in accelerated structural remodeling, fibrosis, arrhythmia, and mortality in response to stress. At the molecular level, we demonstrate that αII spectrin plays a nodal role for global cardiac spectrin regulation, as αII spectrin cKO hearts exhibited remodeling of αI spectrin and altered ß-spectrin expression and localization. At the cellular level, αII spectrin deficiency resulted in altered expression, targeting, and regulation of cardiac ion channels NaV1.5 and KV4.3. In summary, our findings define critical and unexpected roles for the multifunctional αII spectrin protein in the heart. Furthermore, our work provides a new in vivo animal model to study the roles of αII spectrin in the cardiomyocyte.


Subject(s)
Arrhythmias, Cardiac/pathology , Disease Models, Animal , Heart Failure/pathology , Ischemia/pathology , Myocytes, Cardiac/pathology , Spectrin/physiology , Animals , Arrhythmias, Cardiac/etiology , Cells, Cultured , Female , Heart Failure/etiology , Humans , Ischemia/etiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...