Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Immun Ageing ; 21(1): 34, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840213

ABSTRACT

BACKGROUND: Streptococcus pneumoniae (pneumococcus) is a leading cause of pneumonia in older adults. Successful control of pneumococci requires robust pulmonary neutrophil influx early in infection. However, aging is associated with aberrant neutrophil recruitment and the mechanisms behind that are not understood. Here we explored how neutrophil recruitment following pneumococcal infection changes with age and the host pathways regulating this. RESULTS: Following pneumococcal infection there was a significant delay in early neutrophil recruitment to the lungs of aged mice. Neutrophils from aged mice showed defects in trans-endothelial migration in vitro compared to young controls. To understand the pathways involved, we examined immune modulatory extracellular adenosine (EAD) signaling, that is activated upon cellular damage. Signaling through the lower affinity A2A and A2B adenosine receptors had no effect on neutrophil recruitment to infected lungs. In contrast, inhibition of the high affinity A1 receptor in young mice blunted neutrophil recruitment to the lungs following infection. A1 receptor inhibition decreased expression of CXCR2 on circulating neutrophils, which is required for trans-endothelial migration. Indeed, A1 receptor signaling on neutrophils was required for their ability to migrate across endothelial cells in response to infection. Aging was not associated with defects in EAD production or receptor expression on neutrophils. However, agonism of A1 receptor in aged mice rescued the early defect in neutrophil migration to the lungs and improved control of bacterial burden. CONCLUSIONS: This study suggests age-driven defects in EAD damage signaling can be targeted to rescue the delay in pulmonary neutrophil migration in response to bacterial pneumonia.

2.
bioRxiv ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38260350

ABSTRACT

Background: Streptococcus pneumoniae (pneumococcus) is a leading cause of pneumonia in older adults. Successful control of pneumococci requires robust pulmonary neutrophil influx early in infection. However, aging is associated with aberrant neutrophil recruitment and the mechanisms behind that are not understood. Here we explored how neutrophil recruitment following pneumococcal infection changes with age and the host pathways regulating this. Results: Following pneumococcal infection there was a significant delay in early neutrophil recruitment to the lungs of aged mice. Neutrophils from aged mice showed defects in trans-endothelial migration in vitro compared to young controls. To understand the pathways involved, we examined immune modulatory extracellular adenosine (EAD) signaling, that is activated upon cellular damage. Signaling through the lower affinity A2A and A2B adenosine receptors had no effect on neutrophil recruitment to infected lungs. In contrast, inhibition of the high affinity A1 receptor in young mice blunted neutrophil recruitment to the lungs following infection. A1 receptor inhibition decreased expression of CXCR2 on circulating neutrophils, which is required for transendothelial migration. Indeed, A1 receptor signaling on neutrophils was required for their ability to migrate across endothelial cells in response to infection. Aging was not associated with defects in EAD production or receptor expression on neutrophils. However, agonism of A1 receptor in aged mice rescued the early defect in neutrophil migration to the lungs and improved control of bacterial burden. Conclusions: This study suggests age-driven defects in EAD damage signaling can be targeted to rescue the delay in pulmonary neutrophil migration in response to bacterial pneumonia.

3.
Front Cell Infect Microbiol ; 12: 849224, 2022.
Article in English | MEDLINE | ID: mdl-35402289

ABSTRACT

Despite the availability of vaccines, Streptococcus pneumoniae (pneumococcus) remains a serious cause of infections in the elderly. The efficacy of anti-pneumococcal vaccines declines with age. While age-driven changes in antibody responses are well defined, less is known about the role of innate immune cells such as polymorphonuclear leukocytes (PMNs) in the reduced vaccine protection seen in aging. Here we explored the role of PMNs in protection against S. pneumoniae in vaccinated hosts. We found that depletion of PMNs in pneumococcal conjugate vaccine (PCV) treated young mice prior to pulmonary challenge with S. pneumoniae resulted in dramatic loss of host protection against infection. Immunization boosted the ability of PMNs to kill S. pneumoniae and this was dependent on bacterial opsonization by antibodies. Bacterial opsonization with immune sera increased several PMN anti-microbial activities including bacterial uptake, degranulation and ROS production. As expected, PCV failed to protect old mice against S. pneumoniae. In probing the role of PMNs in this impaired protection, we found that aging was accompanied by an intrinsic decline in PMN function. PMNs from old mice failed to effectively kill S. pneumoniae even when the bacteria were opsonized with immune sera from young controls. In exploring mechanisms, we found that PMNs from old mice produced less of the antimicrobial peptide CRAMP and failed to efficiently kill engulfed pneumococci. Importantly, adoptive transfer of PMNs from young mice reversed the susceptibility of vaccinated old mice to pneumococcal infection. Overall, this study demonstrates that the age-driven decline in PMN function impairs vaccine-mediated protection against Streptococcus pneumoniae.


Subject(s)
Neutrophils , Pneumococcal Infections , Animals , Antibodies, Bacterial , Immune Sera , Mice , Pneumococcal Infections/microbiology , Pneumococcal Vaccines , Streptococcus pneumoniae , Vaccines, Conjugate
4.
Infect Immun ; 89(4)2021 03 17.
Article in English | MEDLINE | ID: mdl-33495271

ABSTRACT

Elderly individuals are at increased risk of life-threatening pulmonary infections. Neutrophils are a key determinant of the disease course of pathogen-induced pneumonia. Optimal host defense balances initial robust pulmonary neutrophil responses to control pathogen numbers, ultimately followed by the resolution of inflammation to prevent pulmonary damage. Recent evidence suggests that phenotypic and functional heterogeneity in neutrophils impacts host resistance to pulmonary pathogens. Apart from their apparent role in innate immunity, neutrophils also orchestrate subsequent adaptive immune responses during infection. Thus, the outcome of pulmonary infections can be shaped by neutrophils. This review summarizes the age-driven impairment of neutrophil responses and the contribution of these cells to the susceptibility of the elderly to pneumonia. We describe how aging is accompanied by changes in neutrophil recruitment, resolution, and function. We discuss how systemic and local changes alter the neutrophil phenotype in aged hosts. We highlight the gap in knowledge of whether these changes in neutrophils also contribute to the decline in adaptive immunity seen with age. We further detail the factors that drive dysregulated neutrophil responses in the elderly and the pathways that may be targeted to rebalance neutrophil activity and boost host resistance to pulmonary infections.


Subject(s)
Aging/immunology , Disease Susceptibility , Host-Pathogen Interactions , Neutrophils/immunology , Neutrophils/metabolism , Pneumonia/etiology , Adaptive Immunity , Age Factors , Aging/metabolism , Animals , Cell Communication/immunology , Cell Plasticity/immunology , Cytokines/metabolism , Disease Management , Disease Resistance/immunology , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate , Neutrophil Activation/genetics , Neutrophil Activation/immunology , Phagocytosis/genetics , Phagocytosis/immunology , Pneumonia/metabolism , Pneumonia/prevention & control , Pneumonia/therapy
5.
Methods Mol Biol ; 2183: 559-574, 2021.
Article in English | MEDLINE | ID: mdl-32959268

ABSTRACT

Antibodies against Streptococcus pneumoniae (pneumococcus) following vaccination are crucial for host protection against invasive pneumococcal infections. The antibodies induced by pneumococcal vaccines act as opsonins to mediate bacterial uptake and killing by host phagocytic cells, especially polymorphonuclear leukocytes (PMNs) also called neutrophils. Therefore, it is important to measure not only the levels of antibodies induced by a pneumococcal vaccine candidate but their actual functional capacity in mediating bacterial opsonization and killing by PMNs. Here, we describe a protocol to demonstrate effective deposition of vaccine-induced antibodies on the surface of S. pneumoniae by flow cytometry and subsequent opsonophagocytic killing (OPH) by murine bone-marrow derived PMNs.


Subject(s)
Antibodies, Bacterial/immunology , Neutrophils/immunology , Pneumococcal Infections/immunology , Pneumococcal Vaccines/immunology , Streptococcus pneumoniae/immunology , Animals , Biomarkers , Bone Marrow Cells/immunology , Bone Marrow Cells/metabolism , Flow Cytometry , Immune Sera/immunology , Mice , Neutrophils/metabolism , Phagocytes/immunology , Phagocytes/metabolism , Pneumococcal Infections/metabolism , Pneumococcal Infections/microbiology
6.
Front Aging ; 22021.
Article in English | MEDLINE | ID: mdl-35291600

ABSTRACT

Despite the availability of licensed vaccines, pneumococcal disease caused by the bacteria Streptococcus pneumoniae (pneumococcus), remains a serious infectious disease threat globally. Disease manifestations include pneumonia, bacteremia, and meningitis, resulting in over a million deaths annually. Pneumococcal disease disproportionally impacts older adults aged ≥65 years. Interventions are complicated through a combination of complex disease progression and 100 different bacterial capsular polysaccharide serotypes. This has made it challenging to develop a broad vaccine against S. pneumoniae, with current options utilizing capsular polysaccharides as the primary antigenic content. However, current vaccines are substantially less effective in protecting the elderly. We previously developed a Liposomal Encapsulation of Polysaccharides (LEPS) vaccine platform, designed around limitations of current pneumococcal vaccines, that allowed the noncovalent coupling of polysaccharide and protein antigen content and protected young hosts against pneumococcal infection in murine models. In this study, we modified the formulation to make it more economical and tested the novel LEPS vaccine in aged hosts. We found that in young mice (2-3 months), LEPS elicited comparable responses to the pneumococcal conjugate vaccine Prevnar-13. Further, LEPS immunization of old mice (18-22 months) induced comparable antibody levels and improved antibody function compared to Prevnar-13. Importantly, LEPS protected old mice against both invasive and lung localized pneumococcal infections. In summary, LEPS is an alternative and effective vaccine strategy that protects aged hosts against different manifestations of pneumococcal disease.

7.
Aging Cell ; 19(10): e13218, 2020 10.
Article in English | MEDLINE | ID: mdl-32790148

ABSTRACT

The elderly are susceptible to serious infections by Streptococcus pneumoniae (pneumococcus), which calls for a better understanding of the pathways driving the decline in host defense in aging. We previously found that extracellular adenosine (EAD) shaped polymorphonuclear cell (PMN) responses, which are crucial for controlling infection. EAD is produced by CD39 and CD73, and signals via A1, A2A, A2B, and A3 receptors. The objective of this study was to explore the age-driven changes in the EAD pathway and its impact on PMN function. We found in comparison to young mice, PMNs from old mice expressed significantly less CD73, but similar levels of CD39 and adenosine receptors. PMNs from old mice failed to efficiently kill pneumococci ex vivo; however, supplementation with adenosine rescued this defect. Importantly, transfer of PMNs expressing CD73 from young mice reversed the susceptibility of old mice to pneumococcal infection. To identify which adenosine receptor(s) is involved, we used specific agonists and inhibitors. We found that A1 receptor signaling was crucial for PMN function as inhibition or genetic ablation of A1 impaired the ability of PMNs from young mice to kill pneumococci. Importantly, activation of A1 receptors rescued the age-associated defect in PMN function. In exploring mechanisms, we found that PMNs from old mice failed to efficiently kill engulfed pneumococci and that A1 receptor controlled intracellular killing. In summary, targeting the EAD pathway reverses the age-driven decline in PMN antimicrobial function, which has serious implications in combating infections.


Subject(s)
Adenosine/metabolism , Neutrophils/metabolism , Streptococcus pneumoniae/cytology , 5'-Nucleotidase/biosynthesis , 5'-Nucleotidase/immunology , Adenosine/immunology , Animals , Cellular Senescence/immunology , Male , Mice , Mice, Inbred C57BL , Neutrophils/enzymology , Neutrophils/immunology , Neutrophils/transplantation , Pneumococcal Infections/immunology , Pneumococcal Infections/microbiology , Pneumococcal Infections/therapy , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...