Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 24(11): 103276, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34755096

ABSTRACT

Lafora disease (LD) is a fatal childhood dementia characterized by progressive myoclonic epilepsy manifesting in the teenage years, rapid neurological decline, and death typically within ten years of onset. Mutations in either EPM2A, encoding the glycogen phosphatase laforin, or EPM2B, encoding the E3 ligase malin, cause LD. Whole exome sequencing has revealed many EPM2A variants associated with late-onset or slower disease progression. We established an empirical pipeline for characterizing the functional consequences of laforin missense mutations in vitro using complementary biochemical approaches. Analysis of 26 mutations revealed distinct functional classes associated with different outcomes that were supported by clinical cases. For example, F321C and G279C mutations have attenuated functional defects and are associated with slow progression. This pipeline enabled rapid characterization and classification of newly identified EPM2A mutations, providing clinicians and researchers genetic information to guide treatment of LD patients.

2.
Clin Biochem ; 93: 80-89, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33831386

ABSTRACT

OBJECTIVES: Mutations in the gene encoding the glycogen phosphatase laforin result in the fatal childhood dementia Lafora disease (LD). A cellular hallmark of LD is cytoplasmic, hyper-phosphorylated, glycogen-like aggregates called Lafora bodies (LBs) that form in nearly all tissues and drive disease progression. Additional tools are needed to define the cellular function of laforin, understand the pathological role of laforin in LD, and determine the role of glycogen phosphate in glycogen metabolism. In this work, we present the generation and characterization of laforin nanobodies, with one being a laforin inhibitor. DESIGN AND METHODS: We identify multiple classes of specific laforin-binding nanobodies and determine their binding epitopes using hydrogen deuterium exchange (HDX) mass spectrometry. Using para-nitrophenyl phosphate (pNPP) and a malachite gold-based assay specific for glucan phosphatase activity, we assess the inhibitory effect of one nanobody on laforin's catalytic activity. RESULTS: Six families of laforin nanobodies are characterized and their epitopes mapped. One nanobody is identified and characterized that serves as an inhibitor of laforin's phosphatase activity. CONCLUSIONS: The six generated and characterized laforin nanobodies, with one being a laforin inhibitor, are an important set of tools that open new avenues to define unresolved glycogen metabolism questions.


Subject(s)
Enzyme Inhibitors/chemistry , Protein Tyrosine Phosphatases, Non-Receptor/antagonists & inhibitors , Protein Tyrosine Phosphatases, Non-Receptor/chemistry , Single-Domain Antibodies/biosynthesis , Single-Domain Antibodies/chemistry , Animals , Biological Assay , Camelids, New World , Chromatography, Gel , Enzyme Inhibitors/pharmacology , Epitope Mapping , Glycogen/metabolism , Gold/chemistry , Humans , Hydrogen Deuterium Exchange-Mass Spectrometry , Lafora Disease/enzymology , Models, Molecular , Nitrophenols/chemistry , Organometallic Compounds/chemistry , Organophosphorus Compounds/chemistry , Phosphoric Monoester Hydrolases/antagonists & inhibitors , Phosphoric Monoester Hydrolases/chemistry , Phosphoric Monoester Hydrolases/metabolism , Protein Binding , Protein Tyrosine Phosphatases, Non-Receptor/metabolism , Single-Domain Antibodies/isolation & purification
3.
Mol Pharm ; 16(9): 3791-3801, 2019 09 03.
Article in English | MEDLINE | ID: mdl-31329461

ABSTRACT

Lafora disease (LD) is a fatal juvenile epilepsy characterized by the accumulation of aberrant glucan aggregates called Lafora bodies (LBs). Delivery of protein-based therapeutics to the central nervous system (CNS) for the clearance of LBs remains a unique challenge in the field. Recently, a humanized antigen-binding fragment (hFab) derived from a murine systemic lupus erythematosus DNA autoantibody (3E10) has been shown to mediate cell penetration and proposed as a broadly applicable carrier to mediate cellular targeting and uptake. We report studies on the efficacy and CNS delivery of VAL-0417, an antibody-enzyme fusion composed of the 3E10 hFab and human pancreatic α-amylase, in a mouse model of LD. An enzyme-linked immunosorbent assay has been developed to detect VAL-0417 post-treatment as a measure of delivery efficacy. We demonstrate the robust and sensitive detection of the fusion protein in multiple tissue types. Using this method, we measured biodistribution in different methods of delivery. We found that intracerebroventricular administration provided robust CNS delivery when compared to intrathecal administration. These data define critical steps in the translational pipeline of VAL-0417 for the treatment of LD.


Subject(s)
Brain/drug effects , Drug Delivery Systems/methods , Immunoglobulin Fab Fragments/genetics , Immunoglobulin Fab Fragments/metabolism , Lafora Disease/drug therapy , Pancreatic alpha-Amylases/genetics , Pancreatic alpha-Amylases/pharmacokinetics , Animals , Artificial Gene Fusion/methods , Brain/metabolism , Disease Models, Animal , Drug Carriers/metabolism , Enzyme-Linked Immunosorbent Assay , Glucans/metabolism , HEK293 Cells , Humans , Mice , Mice, Knockout , Plasmids/genetics , Protein Tyrosine Phosphatases, Non-Receptor/genetics , Tissue Distribution , Treatment Outcome
4.
Cell Metab ; 30(4): 689-705.e6, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31353261

ABSTRACT

Lafora disease (LD) is a fatal childhood epilepsy caused by recessive mutations in either the EPM2A or EPM2B gene. A hallmark of LD is the intracellular accumulation of insoluble polysaccharide deposits known as Lafora bodies (LBs) in the brain and other tissues. In LD mouse models, genetic reduction of glycogen synthesis eliminates LB formation and rescues the neurological phenotype. Therefore, LBs have become a therapeutic target for ameliorating LD. Herein, we demonstrate that human pancreatic α-amylase degrades LBs. We fused this amylase to a cell-penetrating antibody fragment, and this antibody-enzyme fusion (VAL-0417) degrades LBs in vitro and dramatically reduces LB loads in vivo in Epm2a-/- mice. Using metabolomics and multivariate analysis, we demonstrate that VAL-0417 treatment of Epm2a-/- mice reverses the metabolic phenotype to a wild-type profile. VAL-0417 is a promising drug for the treatment of LD and a putative precision therapy platform for intractable epilepsy.


Subject(s)
Brain/drug effects , Drug Discovery , Inclusion Bodies/drug effects , Lafora Disease/therapy , Pancreatic alpha-Amylases/pharmacology , Recombinant Fusion Proteins/pharmacology , Animals , Brain/pathology , Disease Models, Animal , HEK293 Cells , Humans , Immunoglobulin G/therapeutic use , Mice , Mice, Inbred C57BL , Pancreatic alpha-Amylases/therapeutic use , Rats , Recombinant Fusion Proteins/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...