Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nat Commun ; 10(1): 5611, 2019 12 09.
Article in English | MEDLINE | ID: mdl-31819057

ABSTRACT

Oxidation and alkylation of nucleobases are known to disrupt their base-pairing properties within RNA. It is, however, unclear whether organisms have evolved general mechanism(s) to deal with this damage. Here we show that the mRNA-surveillance pathway of no-go decay and the associated ribosome-quality control are activated in response to nucleobase alkylation and oxidation. Our findings reveal that these processes are important for clearing chemically modified mRNA and the resulting aberrant-protein products. In the absence of Xrn1, the level of damaged mRNA significantly increases. Furthermore, deletion of LTN1 results in the accumulation of protein aggregates in the presence of oxidizing and alkylating agents. This accumulation is accompanied by Hel2-dependent regulatory ubiquitylation of ribosomal proteins. Collectively, our data highlight the burden of chemically damaged mRNA on cellular homeostasis and suggest that organisms evolved mechanisms to counter their accumulation.


Subject(s)
Oxidative Stress , Ribosomes/metabolism , 4-Nitroquinoline-1-oxide/metabolism , Alkylation , DNA Adducts/metabolism , DNA Damage , HEK293 Cells , Humans , Methyl Methanesulfonate/pharmacology , Mutation/genetics , Oxidation-Reduction , Peptides/metabolism , Polyribosomes/metabolism , Protein Aggregates , Quinolones/metabolism , RNA Stability , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ribosomal Proteins/metabolism , Ribosomes/drug effects , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
2.
Nucleic Acids Res ; 47(18): 9857-9870, 2019 10 10.
Article in English | MEDLINE | ID: mdl-31400119

ABSTRACT

Of the four bases, guanine is the most susceptible to oxidation, which results in the formation of 8-oxoguanine (8-oxoG). In protein-free DNA, 8-oxodG adopts the syn conformation more frequently than the anti one. In the syn conformation, 8-oxodG base pairs with dA. The equilibrium between the anti and syn conformations of the adduct are known to be altered by the enzyme recognizing 8-oxodG. We previously showed that 8-oxoG in mRNA severely disrupts tRNA selection, but the underlying mechanism for these effects was not addressed. Here, we use miscoding antibiotics and ribosome mutants to probe how 8-oxoG interacts with the tRNA anticodon in the decoding center. Addition of antibiotics and introduction of error-inducing mutations partially suppressed the effects of 8-oxoG. Under these conditions, rates and/or endpoints of peptide-bond formation for the cognate (8-oxoG•C) and near-cognate (8-oxoG•A) aminoacyl-tRNAs increased. In contrast, the antibiotics had little effect on other mismatches, suggesting that the lesion restricts the nucleotide from forming other interactions. Our findings suggest that 8-oxoG predominantly adopts the syn conformation in the A site. However, its ability to base pair with adenosine in this conformation is not sufficient to promote the necessary structural changes for tRNA selection to proceed.


Subject(s)
Base Pairing/genetics , Guanosine/analogs & derivatives , Nucleic Acid Conformation , Ribosomes/genetics , Anti-Bacterial Agents/pharmacology , Anticodon/chemistry , Anticodon/genetics , DNA Damage/genetics , Escherichia coli/genetics , Guanine/chemistry , Guanosine/chemistry , Guanosine/genetics , Mutation/drug effects , Oxidation-Reduction , RNA, Messenger/genetics , RNA, Transfer , RNA, Transfer, Amino Acyl/drug effects , Ribosomes/chemistry
3.
Cell Rep ; 28(7): 1679-1689.e4, 2019 08 13.
Article in English | MEDLINE | ID: mdl-31412239

ABSTRACT

During translation, an mRNA is typically occupied by multiple ribosomes sparsely distributed across the coding sequence. This distribution, mediated by slow rates of initiation relative to elongation, ensures that they rarely collide with each other, but given the stochastic nature of protein synthesis, collision events do occur. Recent work from our lab suggested that collisions signal for mRNA degradation through no-go decay (NGD). We have explored the impact of stalling on ribosome function when NGD is compromised and found it to result in +1 frameshifting. We used reporters that limit the number of ribosomes on a transcript to show that +1 frameshifting is induced through ribosome collision in yeast and bacteria. Furthermore, we observe a positive correlation between ribosome density and frameshifting efficiency. It is thus tempting to speculate that NGD, in addition to its role in mRNA quality control, evolved to cope with stochastic collision events to prevent deleterious frameshifting events.


Subject(s)
Frameshifting, Ribosomal , Protein Biosynthesis , RNA Stability , RNA, Messenger/metabolism , Ribosomes/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Open Reading Frames , Quality Control , RNA, Fungal/genetics , RNA, Fungal/metabolism , RNA, Messenger/genetics , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Ribosomes/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
4.
PLoS Genet ; 14(11): e1007818, 2018 11.
Article in English | MEDLINE | ID: mdl-30475795

ABSTRACT

No-go Decay (NGD) is a process that has evolved to deal with stalled ribosomes resulting from structural blocks or aberrant mRNAs. The process is distinguished by an endonucleolytic cleavage prior to degradation of the transcript. While many of the details of the pathway have been described, the identity of the endonuclease remains unknown. Here we identify residues of the small subunit ribosomal protein Rps3 that are important for NGD by affecting the cleavage reaction. Mutation of residues within the ribosomal entry tunnel that contact the incoming mRNA leads to significantly reduced accumulation of cleavage products, independent of the type of stall sequence, and renders cells sensitive to damaging agents thought to trigger NGD. These phenotypes are distinct from those seen in combination with other NGD factors, suggesting a separate role for Rps3 in NGD. Conversely, ribosomal proteins ubiquitination is not affected by rps3 mutations, indicating that upstream ribosome quality control (RQC) events are not dependent on these residues. Together, these results suggest that Rps3 is important for quality control on the ribosome and strongly supports the notion that the ribosome itself plays a central role in the endonucleolytic cleavage reaction during NGD.


Subject(s)
RNA Stability , RNA, Fungal/metabolism , RNA, Messenger/metabolism , Ribosomal Proteins/metabolism , Ribosome Subunits, Small/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Amino Acid Sequence , Amino Acid Substitution , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Endoribonucleases/genetics , Endoribonucleases/metabolism , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , Genes, Fungal , Models, Molecular , Mutagenesis, Site-Directed , Mutation , Peptide Chain Elongation, Translational , Protein Conformation , RNA, Fungal/genetics , RNA, Messenger/genetics , Ribosomal Proteins/chemistry , Ribosomal Proteins/genetics , Ribosome Subunits, Small/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Sequence Homology, Amino Acid , Ubiquitination
5.
J Neurosci ; 38(6): 1326-1334, 2018 02 07.
Article in English | MEDLINE | ID: mdl-29054877

ABSTRACT

In mammals, the suprachiasmatic nucleus (SCN) of the hypothalamus coordinates daily rhythms including sleep-wake, hormone release, and gene expression. The cells of the SCN must synchronize to each other to drive these circadian rhythms in the rest of the body. The ontogeny of circadian cycling and intercellular coupling in the SCN remains poorly understood. Recent in vitro studies have recorded circadian rhythms from the whole embryonic SCN. Here, we tracked the onset and precision of rhythms in PERIOD2 (PER2), a clock protein, within the SCN isolated from embryonic and postnatal mice of undetermined sex. We found that a few SCN cells developed circadian periodicity in PER2 by 14.5 d after mating (E14.5) with no evidence for daily cycling on E13.5. On E15.5, the fraction of competent oscillators increased dramatically corresponding with stabilization of their circadian periods. The cells of the SCN harvested at E15.5 expressed sustained, synchronous daily rhythms. By postnatal day 2 (P2), SCN oscillators displayed the daily, dorsal-ventral phase wave in clock gene expression typical of the adult SCN. Strikingly, vasoactive intestinal polypeptide (VIP), a neuropeptide critical for synchrony in the adult SCN, and its receptor, VPAC2R, reached detectable levels after birth and after the onset of circadian synchrony. Antagonists of GABA or VIP signaling or action potentials did not disrupt circadian synchrony in the E15.5 SCN. We conclude that endogenous daily rhythms in the fetal SCN begin with few noisy oscillators on E14.5, followed by widespread oscillations that rapidly synchronize on E15.5 by an unknown mechanism.SIGNIFICANCE STATEMENT We recorded the onset of PER2 circadian oscillations during embryonic development in the mouse SCN. When isolated at E13.5, the anlagen of the SCN expresses high, arrhythmic PER2. In contrast, a few cells show noisy circadian rhythms in the isolated E14.5 SCN and most show reliable, self-sustained, synchronized rhythms in the E15.5 SCN. Strikingly, this synchrony at E15.5 appears before expression of VIP or its receptor and persists in the presence of blockers of VIP, GABA or neuronal firing. Finally, the dorsal-ventral phase wave of PER2 typical of the adult SCN appears ∼P2, indicating that multiple signals may mediate circadian synchrony during the ontogeny of the SCN.


Subject(s)
Circadian Rhythm/physiology , Suprachiasmatic Nucleus/physiology , Aging/genetics , Aging/physiology , Animals , Female , GABA Antagonists/pharmacology , Male , Mice , Mice, Inbred C57BL , Neurons/physiology , Period Circadian Proteins/genetics , Period Circadian Proteins/physiology , Pregnancy , Receptors, Vasoactive Intestinal Peptide, Type II/biosynthesis , Receptors, Vasoactive Intestinal Peptide, Type II/genetics , Suprachiasmatic Nucleus/cytology , Suprachiasmatic Nucleus/growth & development , Vasoactive Intestinal Peptide/antagonists & inhibitors , Vasoactive Intestinal Peptide/metabolism , Vasoactive Intestinal Peptide/physiology
6.
Mol Cell ; 68(2): 361-373.e5, 2017 Oct 19.
Article in English | MEDLINE | ID: mdl-28943311

ABSTRACT

No-go decay (NGD) is a eukaryotic quality control mechanism that evolved to cope with translational arrests. The process is characterized by an endonucleolytic cleavage near the stall sequence, but the mechanistic details are unclear. Our analysis of cleavage sites indicates that cleavage requires multiple ribosomes on the mRNA. We also show that reporters harboring stall sequences near the initiation codon, which cannot accommodate multiple ribosomes, are not subject to NGD. Consistent with our model, we uncover an inverse correlation between ribosome density per mRNA and cleavage efficiency. Furthermore, promoting global ribosome collision in vivo resulted in ubiquitination of ribosomal proteins, suggesting that collision is sensed by the cell to initiate downstream quality control processes. Collectively, our data suggest that NGD and subsequent quality control are triggered by ribosome collision. This model provides insight into the regulation of quality control processes and the manner by which they reduce off-target effects.


Subject(s)
RNA Stability/physiology , RNA, Fungal/metabolism , Ribosomes/metabolism , Saccharomyces cerevisiae/metabolism , RNA, Fungal/genetics , Ribosomes/genetics , Saccharomyces cerevisiae/genetics
7.
Article in English | MEDLINE | ID: mdl-27193249

ABSTRACT

Quality control processes are widespread and play essential roles in detecting defective molecules and removing them in order to maintain organismal fitness. Aberrant messenger RNA (mRNA) molecules, unless properly managed, pose a significant hurdle to cellular proteostasis. Often mRNAs harbor premature stop codons, possess structures that present a block to the translational machinery, or lack stop codons entirely. In eukaryotes, the three cytoplasmic mRNA-surveillance processes, nonsense-mediated decay (NMD), no-go decay (NGD), and nonstop decay (NSD), evolved to cope with these aberrant mRNAs, respectively. Nonstop mRNAs and mRNAs that inhibit translation elongation are especially problematic as they sequester valuable ribosomes from the translating ribosome pool. As a result, in addition to RNA degradation, NSD and NGD are intimately coupled to ribosome rescue in all domains of life. Furthermore, protein products produced from all three classes of defective mRNAs are more likely to malfunction. It is not surprising then that these truncated nascent protein products are subject to degradation. Over the past few years, many studies have begun to document a central role for the ribosome in initiating the RNA and protein quality control processes. The ribosome appears to be responsible for recognizing the target mRNAs as well as for recruiting the factors required to carry out the processes of ribosome rescue and nascent protein decay. WIREs RNA 2017, 8:e1366. doi: 10.1002/wrna.1366 For further resources related to this article, please visit the WIREs website.


Subject(s)
Peptide Chain Elongation, Translational , Peptide Chain Termination, Translational , Protein Biosynthesis , RNA, Messenger/genetics , Ribosomes/genetics , Animals , Humans
8.
Cell Rep ; 17(1): 11-18, 2016 09 27.
Article in English | MEDLINE | ID: mdl-27681416

ABSTRACT

Termination of protein synthesis on the ribosome is catalyzed by release factors (RFs), which share a conserved glycine-glycine-glutamine (GGQ) motif. The glutamine residue is methylated in vivo, but a mechanistic understanding of its contribution to hydrolysis is lacking. Here, we show that the modification, apart from increasing the overall rate of termination on all dipeptides, substantially increases the rate of peptide release on a subset of amino acids. In the presence of unmethylated RFs, we measure rates of hydrolysis that are exceptionally slow on proline and glycine residues and approximately two orders of magnitude faster in the presence of the methylated factors. Structures of 70S ribosomes bound to methylated RF1 and RF2 reveal that the glutamine side-chain methylation packs against 23S rRNA nucleotide 2451, stabilizing the GGQ motif and placing the side-chain amide of the glutamine toward tRNA. These data provide a framework for understanding how release factor modifications impact termination.


Subject(s)
Bacterial Proteins/chemistry , Peptide Chain Termination, Translational , Peptide Termination Factors/chemistry , RNA, Ribosomal, 23S/chemistry , RNA, Transfer/chemistry , Ribosomes/chemistry , Amino Acid Motifs , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Codon, Terminator/chemistry , Codon, Terminator/metabolism , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Hydrolysis , Methylation , Models, Molecular , Peptide Termination Factors/genetics , Peptide Termination Factors/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Structure, Tertiary , RNA, Ribosomal, 23S/genetics , RNA, Ribosomal, 23S/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism , Ribosomes/metabolism , Thermus thermophilus/genetics , Thermus thermophilus/metabolism
9.
Cell Mol Life Sci ; 73(19): 3639-53, 2016 10.
Article in English | MEDLINE | ID: mdl-27155660

ABSTRACT

The "central dogma" of molecular biology describes how information contained in DNA is transformed into RNA and finally into proteins. In order for proteins to maintain their functionality in both the parent cell and subsequent generations, it is essential that the information encoded in DNA and RNA remains unaltered. DNA and RNA are constantly exposed to damaging agents, which can modify nucleic acids and change the information they encode. While much is known about how cells respond to damaged DNA, the importance of protecting RNA has only become appreciated over the past decade. Modification of the nucleobase through oxidation and alkylation has long been known to affect its base-pairing properties during DNA replication. Similarly, recent studies have begun to highlight some of the unwanted consequences of chemical damage on mRNA decoding during translation. Oxidation and alkylation of mRNA appear to have drastic effects on the speed and fidelity of protein synthesis. As some mRNAs can persist for days in certain tissues, it is not surprising that it has recently emerged that mRNA-surveillance and RNA-repair pathways have evolved to clear or correct damaged mRNA.


Subject(s)
RNA/metabolism , Animals , Humans , Models, Biological , RNA/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ribosomes/metabolism
10.
J Biol Rhythms ; 31(1): 57-67, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26712166

ABSTRACT

The suprachiasmatic nucleus (SCN) regulates daily rhythms in physiology and behavior. Previous studies suggest a critical role for neurons expressing vasoactive intestinal peptide (VIP) in coordinating rhythmicity and synchronization in the SCN. Here we examined the firing properties of VIP-expressing SCN neurons in acute brain slices. Active and passive membrane properties were measured in VIP and in non-VIP neurons during the day and at night. Current-clamp recordings revealed that both VIP and non-VIP neurons were spontaneously active, with higher firing rates during the day than at night. Average firing frequencies, however, were higher in VIP neurons (3.1 ± 0.2 Hz, day and 2.4 ± 0.2 Hz, night) than in non-VIP neurons (1.8 ± 0.2 Hz, day and 0.9 ± 0.2 Hz, night), both day and night. The waveforms of individual action potentials in VIP and non-VIP neurons were also distinct. Action potential durations (APD50) were shorter in VIP neurons (3.6 ± 0.1 ms, day and 2.9 ± 0.1 ms, night) than in non-VIP neurons (4.4 ± 0.3 ms, day and 3.5 ± 0.2 ms, night) throughout the light-dark cycle. In addition, afterhyperpolarization (AHP) amplitudes were larger in VIP neurons (21 ± 0.8 mV, day and 24.9 ± 0.9 mV, night) than in non-VIP neurons (17.2 ± 1.1 mV, day and 20.5 ± 1.2 mV, night) during the day and at night. Furthermore, significant day/night differences were observed in APD50 and AHP amplitudes in both VIP and non-VIP SCN neurons, consistent with rhythmic changes in ionic conductances that contribute to shaping the firing properties of both cell types. The higher day and night firing rates of VIP neurons likely contribute to synchronizing electrical activity in the SCN.


Subject(s)
Neurons/physiology , Suprachiasmatic Nucleus/cytology , Suprachiasmatic Nucleus/physiology , Vasoactive Intestinal Peptide/metabolism , Action Potentials , Animals , Circadian Rhythm , Mice , Photoperiod , Receptors, Vasoactive Intestinal Peptide, Type II/metabolism , Vasoactive Intestinal Peptide/genetics
11.
Cell Rep ; 9(4): 1256-64, 2014 Nov 20.
Article in English | MEDLINE | ID: mdl-25456128

ABSTRACT

Chemical damage to RNA affects its functional properties and thus may pose a significant hurdle to the translational apparatus; however, the effects of damaged mRNA on the speed and accuracy of the decoding process and their interplay with quality-control processes are not known. Here, we systematically explore the effects of oxidative damage on the decoding process using a well-defined bacterial in vitro translation system. We find that the oxidative lesion 8-oxoguanosine (8-oxoG) reduces the rate of peptide-bond formation by more than three orders of magnitude independent of its position within the codon. Interestingly, 8-oxoG had little effect on the fidelity of the selection process, suggesting that the modification stalls the translational machinery. Consistent with these findings, 8-oxoG mRNAs were observed to accumulate and associate with polyribosomes in yeast strains in which no-go decay is compromised. Our data provide compelling evidence that mRNA-surveillance mechanisms have evolved to cope with damaged mRNA.


Subject(s)
Guanosine/analogs & derivatives , RNA, Messenger/metabolism , Ribosomes/metabolism , Cell Extracts , Guanosine/metabolism , Oxidation-Reduction , Peptides/metabolism , Polyribosomes/metabolism , Protein Biosynthesis , RNA Stability , Saccharomyces cerevisiae/metabolism
12.
Dev Biol ; 341(2): 472-85, 2010 May 15.
Article in English | MEDLINE | ID: mdl-20230814

ABSTRACT

The specification and patterning of vulval precursor cells (VPCs) in Caenorhabditiselegans is achieved using a conserved EGFR/RAS signaling pathway that is activated by the ligand lin-3/EGF, which is secreted by the neighboring somatic gonad. Previous work has demonstrated that the expression of lin-3 must be tightly regulated to ensure that only three of six equivalent VPCs are induced to differentiate into the mature vulva. Here, we have identified a novel regulator of EGFR/RAS signaling, let-765/nsh-1, that functions upstream of the pathway to promote vulval induction. let-765 encodes a conserved DExD/H box helicase protein and is the C. elegans ortholog of Drosophila strawberry notch. By investigating genetic interactions between let-765 and RAS pathway genes as well as with synthetic multivulva (synMuv) genes, we have demonstrated that let-765 positively regulates the RAS pathway and antagonizes synMuv activity at the level of lin-3/EGF. In support of these proposals, we found that LET-765 is required for producing wild-type levels of lin-3 mRNA. Mutations in let-765 result in pleiotropic phenotypes that imply its function must be required in multiple developmental processes and, together with data presented here, suggest that LET-765 promotes the expression of diverse targets, potentially through interactions with transcriptional activator or repressor complexes.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/embryology , Epidermal Growth Factor/metabolism , Gene Expression Regulation, Developmental , Animals , Caenorhabditis elegans/metabolism , Cloning, Molecular , Female , Vulva/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...