Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Insect Biochem Mol Biol ; 146: 103774, 2022 07.
Article in English | MEDLINE | ID: mdl-35470035

ABSTRACT

Pollinator populations, including bees, are in rapid decline in many parts of the world, raising concerns over the future of ecosystems and food production. Among the factors involved in these declines, poor nutrition deserves attention. The diet consumed by adult worker honeybees (Apis mellifera) is crucial for their behavioral maturation, i.e., the progressive division of labor they perform, such as nurse bees initially and later in life as foragers. Poor pollen nutrition is known to reduce the workers' lifespan, but the underlying physiological and genetic mechanisms are not fully understood. Here we investigate how the lack of pollen in the diet of workers during their first week of adult life can affect age-related phenotypes. During the first seven days of adult life, newly emerged workers were fed either a pollen-deprived (PD) diet mimicking that of an older bee, or a control pollen-rich (PR) diet, as typically consumed by young bees. The PD-fed bees showed alterations in their fat body transcriptome, such as a switch from a protein-lipid based metabolism to a carbohydrate-based metabolism, and a reduced expression of genes involved with immune response. The absence of pollen in the diet also led to an accumulation of oxidative stress markers in fat body tissue and alterations in the cuticular hydrocarbon profiles, which became similar to those of chronologically older bees. Together, our data indicate that the absence of pollen during first week of adulthood triggers the premature onset of an aging-related worker phenotype.


Subject(s)
Aging, Premature , Animals , Bees , Diet , Ecosystem , Pollen , Transcriptome
2.
J Insect Physiol ; 131: 104237, 2021.
Article in English | MEDLINE | ID: mdl-33831437

ABSTRACT

Nosema ceranae is a microsporidium that infects Apis mellifera, causing diverse physiological and behavioral alterations. Given the existence of individual and social mechanisms to reduce infection and fungal spread in the colony, bees may respond differently to infection depending on their rearing conditions. In this study, we investigated the effect of N. ceranae in honey bee foragers naturally infected with different fungal loads in a tropical region. In addition, we explored the effects of N. ceranae artificially infected young bees placed in a healthy colony under field conditions. Honey bees naturally infected with higher loads of N. ceranae showed downregulation of genes from Toll and IMD immune pathways and antimicrobial peptide (AMP) genes, but hemolymph total protein amount and Vitellogenin (Vg) titers were not affected. Artificially infected bees spread N. ceranae to the controls in the colony, but fungal loads were generally lower than those observed in cages, probably because of social immunity. Although no significant changes in mRNA levels of AMP-encoding were observed, N. ceranae artificially infected bees showed downregulation of miR-989 (an immune-related microRNA), lower vitellogenin gene expression, and decreased hemolymph Vg titers. Our results demonstrate for the first time that natural infection by N. ceranae suppresses the immune system of honey bee foragers in the field. This parasite is detrimental to the immune system of young and old bees, and disease spread, mitigation and containment will depend on the colony environment.


Subject(s)
Bees/immunology , Host-Pathogen Interactions/immunology , Nosema/physiology , Animals , Bees/metabolism , Bees/microbiology , Gene Expression , Hemolymph/metabolism
3.
BMC Genomics ; 21(1): 386, 2020 Jun 03.
Article in English | MEDLINE | ID: mdl-32493270

ABSTRACT

BACKGROUND: Most of our understanding on the social behavior and genomics of bees and other social insects is centered on the Western honey bee, Apis mellifera. The genus Apis, however, is a highly derived branch comprising less than a dozen species, four of which genomically characterized. In contrast, for the equally highly eusocial, yet taxonomically and biologically more diverse Meliponini, a full genome sequence was so far available for a single Melipona species only. We present here the genome sequence of Frieseomelitta varia, a stingless bee that has, as a peculiarity, a completely sterile worker caste. RESULTS: The assembly of 243,974,526 high quality Illumina reads resulted in a predicted assembled genome size of 275 Mb composed of 2173 scaffolds. A BUSCO analysis for the 10,526 predicted genes showed that these represent 96.6% of the expected hymenopteran orthologs. We also predicted 169,371 repetitive genomic components, 2083 putative transposable elements, and 1946 genes for non-coding RNAs, largely long non-coding RNAs. The mitochondrial genome comprises 15,144 bp, encoding 13 proteins, 22 tRNAs and 2 rRNAs. We observed considerable rearrangement in the mitochondrial gene order compared to other bees. For an in-depth analysis of genes related to social biology, we manually checked the annotations for 533 automatically predicted gene models, including 127 genes related to reproductive processes, 104 to development, and 174 immunity-related genes. We also performed specific searches for genes containing transcription factor domains and genes related to neurogenesis and chemosensory communication. CONCLUSIONS: The total genome size for F. varia is similar to the sequenced genomes of other bees. Using specific prediction methods, we identified a large number of repetitive genome components and long non-coding RNAs, which could provide the molecular basis for gene regulatory plasticity, including worker reproduction. The remarkable reshuffling in gene order in the mitochondrial genome suggests that stingless bees may be a hotspot for mtDNA evolution. Hence, while being just the second stingless bee genome sequenced, we expect that subsequent targeting of a selected set of species from this diverse clade of highly eusocial bees will reveal relevant evolutionary signals and trends related to eusociality in these important pollinators.


Subject(s)
Bees/physiology , Cell Nucleus/genetics , Computational Biology/methods , Mitochondria/genetics , Animals , Bees/classification , Bees/genetics , Behavior, Animal , Gene Order , Genome Size , Genome, Mitochondrial , High-Throughput Nucleotide Sequencing , Interspersed Repetitive Sequences , RNA, Long Noncoding/genetics , Social Behavior , Whole Genome Sequencing
4.
Sci Rep ; 9(1): 17692, 2019 11 27.
Article in English | MEDLINE | ID: mdl-31776359

ABSTRACT

Stingless bees are generalist pollinators distributed through the pantropical region. There is growing evidence that their wild populations are experiencing substantial decline in response to habitat degradation and pesticides. Policies for conservation of endangered species will benefit from studies focusing on genetic and molecular aspects of their development and behavior. The most common method for looking at gene expression is real-time quantitative polymerase chain reaction preceded by reverse transcription (RT-qPCR) of the mRNA of interest. This method requires the identification of reliable reference genes to correctly estimate fluctuations in transcript levels. To contribute to molecular studies on stingless bees, we used Frieseomelitta varia, Melipona quadrifasciata, and Scaptotrigona bipunctata species to test the expression stability of eight reference genes (act, ef1-α, gapdh, rpl32, rps5, rps18, tbp, and tbp-af) in RT-qPCR procedures in five physiological and experimental conditions (development, sex, tissues, bacteria injection, and pesticide exposure). In general, the rpl32, rps5 and rps18 ribosomal protein genes and tpb-af gene showed the highest stability, thus being identified as suitable reference genes for the three stingless bee species and defined conditions. Our results also emphasized the need to evaluate the stability of candidate genes for any designed experimental condition and stingless bee species.


Subject(s)
Bees/classification , Bees/genetics , Gene Expression/drug effects , Real-Time Polymerase Chain Reaction/methods , Animals , Bees/growth & development , Bees/microbiology , Escherichia coli , Escherichia coli Infections/genetics , Escherichia coli Infections/microbiology , Fat Body , Female , Genes, Essential , Head , Larva/genetics , Male , Ovary , Pesticides/pharmacology , Pupa/genetics , Sex
5.
PLoS One ; 14(3): e0213796, 2019.
Article in English | MEDLINE | ID: mdl-30870522

ABSTRACT

Differences in the timing of exoskeleton melanization and sclerotization are evident when comparing eusocial and solitary bees. This cuticular maturation heterochrony may be associated with life style, considering that eusocial bees remain protected inside the nest for many days after emergence, while the solitary bees immediately start outside activities. To address this issue, we characterized gene expression using large-scale RNA sequencing (RNA-seq), and quantified cuticular hydrocarbon (CHC) through gas chromatography-mass spectrometry in comparative studies of the integument (cuticle plus its underlying epidermis) of two eusocial and a solitary bee species. In addition, we used transmission electron microscopy (TEM) for studying the developing cuticle of these and other three bee species also differing in life style. We found 13,200, 55,209 and 30,161 transcript types in the integument of the eusocial Apis mellifera and Frieseomelitta varia, and the solitary Centris analis, respectively. In general, structural cuticle proteins and chitin-related genes were upregulated in pharate-adults and newly-emerged bees whereas transcripts for odorant binding proteins, cytochrome P450 and antioxidant proteins were overrepresented in foragers. Consistent with our hypothesis, a distance correlation analysis based on the differentially expressed genes suggested delayed cuticle maturation in A. mellifera in comparison to the solitary bee. However, this was not confirmed in the comparison with F. varia. The expression profiles of 27 of 119 genes displaying functional attributes related to cuticle formation/differentiation were positively correlated between A. mellifera and F. varia, and negatively or non-correlated with C. analis, suggesting roles in cuticular maturation heterochrony. However, we also found transcript profiles positively correlated between each one of the eusocial species and C. analis. Gene co-expression networks greatly differed between the bee species, but we identified common gene interactions exclusively between the eusocial species. Except for F. varia, the TEM analysis is consistent with cuticle development timing adapted to the social or solitary life style. In support to our hypothesis, the absolute quantities of n-alkanes and unsaturated CHCs were significantly higher in foragers than in the earlier developmental phases of the eusocial bees, but did not discriminate newly-emerged from foragers in C. analis. By highlighting differences in integument gene expression, cuticle ultrastructure, and CHC profiles between eusocial and solitary bees, our data provided insights into the process of heterochronic cuticle maturation associated to the way of life.


Subject(s)
Bees/genetics , Epidermis/metabolism , Epidermis/ultrastructure , Hydrocarbons/analysis , Insect Proteins/genetics , Integumentary System/physiology , Transcriptome , Animals , Bees/growth & development , Female , Metamorphosis, Biological
6.
Sci Rep ; 7: 40884, 2017 01 18.
Article in English | MEDLINE | ID: mdl-28098233

ABSTRACT

MicroRNAs (miRNAs) are key regulators of developmental processes, such as cell fate determination and differentiation. Previous studies showed Dicer knockdown in honeybee embryos disrupt the processing of functional mature miRNAs and impairs embryo patterning. Here we investigated the expression profiles of miRNAs in honeybee embryogenesis and the role of the highly conserved miR-34-5p in the regulation of genes involved in insect segmentation. A total of 221 miRNAs were expressed in honey bee embryogenesis among which 97 mature miRNA sequences have not been observed before. Interestingly, we observed a switch in dominance between the 5-prime and 3-prime arm of some miRNAs in different embryonic stages; however, most miRNAs present one dominant arm across all stages of embryogenesis. Our genome-wide analysis of putative miRNA-target networks and functional pathways indicates miR-34-5p is one of the most conserved and connected miRNAs associated with the regulation of genes involved in embryonic patterning and development. In addition, we experimentally validated that miR-34-5p directly interacts to regulatory elements in the 3'-untranslated regions of pair-rule (even-skipped, hairy, fushi-tarazu transcription factor 1) and cytoskeleton (actin5C) genes. Our study suggests that miR-34-5p may regulate the expression of pair-rule and cytoskeleton genes during early development and control insect segmentation.


Subject(s)
Cytoskeleton/genetics , Fushi Tarazu Transcription Factors/genetics , Homeodomain Proteins/genetics , Insect Proteins/genetics , MicroRNAs/metabolism , 3' Untranslated Regions , Actins/chemistry , Actins/genetics , Actins/metabolism , Animals , Base Sequence , Bees/genetics , Binding Sites , Embryonic Development/genetics , Fushi Tarazu Transcription Factors/chemistry , Fushi Tarazu Transcription Factors/metabolism , Genome , Homeodomain Proteins/chemistry , Homeodomain Proteins/metabolism , Insect Proteins/chemistry , Insect Proteins/metabolism , MicroRNAs/chemistry , MicroRNAs/genetics , Sequence Alignment , Transcriptome
7.
Nat Commun ; 5: 5529, 2014 Nov 20.
Article in English | MEDLINE | ID: mdl-25409902

ABSTRACT

Increasing evidence suggests small non-coding RNAs (ncRNAs) such as microRNAs (miRNAs) control levels of mRNA expression during experience-related remodelling of the brain. Here we use an associative olfactory learning paradigm in the honeybee Apis mellifera to examine gene expression changes in the brain during memory formation. Brain transcriptome analysis reveals a general downregulation of protein-coding genes, including asparagine synthetase and actin, and upregulation of ncRNAs. miRNA-mRNA network predictions together with PCR validation suggest miRNAs including miR-210 and miR-932 target the downregulated protein-coding genes. Feeding cholesterol-conjugated antisense RNA to bees results in the inhibition of miR-210 and of miR-932. Loss of miR-932 impairs long-term memory formation, but not memory acquisition. Functional analyses show that miR-932 interacts with Act5C, providing evidence for direct regulation of actin expression by an miRNA. An activity-dependent increase in miR-932 expression may therefore control actin-related plasticity mechanisms and affect memory formation in the brain.


Subject(s)
Actins/genetics , Brain/metabolism , Memory/physiology , MicroRNAs/genetics , Neuronal Plasticity/genetics , Actins/metabolism , Animals , Bees , Gene Expression Profiling , Learning , MicroRNAs/metabolism , RNA, Untranslated/genetics
8.
Front Genet ; 5: 445, 2014.
Article in English | MEDLINE | ID: mdl-25566327

ABSTRACT

Major developmental transitions in multicellular organisms are driven by steroid hormones. In insects, these, together with juvenile hormone (JH), control development, metamorphosis, reproduction and aging, and are also suggested to play an important role in caste differentiation of social insects. Here, we aimed to determine how EcR transcription and ecdysteroid titers are related during honeybee postembryonic development and what may actually be the role of EcR in caste development of this social insect. In addition, we expected that knocking-down EcR gene expression would give us information on the participation of the respective protein in regulating downstream targets of EcR. We found that in Apis mellifera females, EcR-A is the predominantly expressed variant in postembryonic development, while EcR-B transcript levels are higher in embryos, indicating an early developmental switch in EcR function. During larval and pupal stages, EcR-B expression levels are very low, while EcR-A transcripts are more variable and abundant in workers compared to queens. Strikingly, these transcript levels are opposite to the ecdysteroid titer profile. 20-hydroxyecdysone (20E) application experiments revealed that low 20E levels induce EcR expression during development, whereas high ecdysteroid titers seem to be repressive. By means of RNAi-mediated knockdown (KD) of both EcR transcript variants we detected the differential expression of 234 poly-A(+) transcripts encoding genes such as CYPs, MRJPs and certain hormone response genes (Kr-h1 and ftz-f1). EcR-KD also promoted the differential expression of 70 miRNAs, including highly conserved ones (e.g., miR-133 and miR-375), as well honeybee-specific ones (e.g., miR-3745 and miR-3761). Our results put in evidence a broad spectrum of EcR-controlled gene expression during postembryonic development of honeybees, revealing new facets of EcR biology in this social insect.

9.
J Exp Biol ; 216(Pt 19): 3724-32, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-23788711

ABSTRACT

In honey bees, vitellogenin (Vg) is hypothesized to be a major factor affecting hormone signaling, food-related behavior, immunity, stress resistance and lifespan. MicroRNAs, which play important roles in post-transcriptional gene regulation, likewise affect many biological processes. The actions of microRNAs and Vg are known to intersect in the context of reproduction; however, the role of these associations on social behavior is unknown. The phenotypic effects of Vg knockdown are best established and studied in the forager stage of workers. Thus, we exploited the well-established RNA interference (RNAi) protocol for Vg knockdown to investigate its downstream effects on microRNA population in honey bee foragers' brain and fat body tissue. To identify microRNAs that are differentially expressed between tissues in control and knockdown foragers, we used µParaflo microfluidic oligonucleotide microRNA microarrays. Our results showed that 76 and 74 microRNAs were expressed in the brain of control and knockdown foragers whereas 66 and 69 microRNAs were expressed in the fat body of control and knockdown foragers, respectively. Target prediction identified potential seed matches for a differentially expressed subset of microRNAs affected by Vg knockdown. These candidate genes are involved in a broad range of biological processes including insulin signaling, juvenile hormone (JH) and ecdysteroid signaling previously shown to affect foraging behavior. Thus, here we demonstrate a causal link between the Vg knockdown forager phenotype and variation in the abundance of microRNAs in different tissues, with possible consequences for the regulation of foraging behavior.


Subject(s)
Bees/genetics , Fat Body/metabolism , Gene Expression Regulation , Insect Proteins/genetics , MicroRNAs/genetics , Vitellogenins/genetics , Animals , Bees/physiology , Brain/metabolism , Feeding Behavior , Female , Male , Phenotype , RNA Interference
10.
Insect Biochem Mol Biol ; 43(5): 474-82, 2013 May.
Article in English | MEDLINE | ID: mdl-23499934

ABSTRACT

In insects, a rapid and massive synthesis of antimicrobial peptides (AMPs) is activated through signaling pathways (Toll and Imd) to combat invading microbial pathogens. However, it is still unclear whether different types of bacteria provoke specific responses. Immune response mechanisms and the activation of specific genes were investigated by challenging Apis mellifera workers with the Gram-negative bacterium Serratia marcescens or the Gram-positive bacterium Micrococcus luteus. The immune system responded by activating most genes of the Toll and Imd pathways, particularly AMP genes. However, genes specifically regulated by M. luteus or S. marcescens were not detected, suggesting an interaction between the signaling pathways that lead to immune effectors synthesis. Despite this finding, kappaB motifs in the 5'-UTRs of selected genes suggest a pathway-specific control of AMP and transferrin-1 gene expression. Regulation by miRNAs was also investigated and revealed a number of candidates for the post-transcriptional regulation of immune genes in bees.


Subject(s)
Bees/microbiology , Bees/physiology , Gene Expression Regulation , Micrococcus luteus/physiology , Serratia marcescens/physiology , Animals , Bees/genetics , Bees/immunology , Insect Proteins/genetics , Insect Proteins/metabolism , MicroRNAs/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Signal Transduction , Transcription Factors/genetics , Transcription Factors/metabolism , Transferrin/genetics , Transferrin/metabolism
11.
Insects ; 4(1): 90-103, 2013 Jan 04.
Article in English | MEDLINE | ID: mdl-26466797

ABSTRACT

RNA interference has been frequently applied to modulate gene function in organisms where the production and maintenance of mutants is challenging, as in our model of study, the honey bee, Apis mellifera. A green fluorescent protein (GFP)-derived double-stranded RNA (dsRNA-GFP) is currently commonly used as control in honey bee RNAi experiments, since its gene does not exist in the A. mellifera genome. Although dsRNA-GFP is not expected to trigger RNAi responses in treated bees, undesirable effects on gene expression, pigmentation or developmental timing are often observed. Here, we performed three independent experiments using microarrays to examine the effect of dsRNA-GFP treatment (introduced by feeding) on global gene expression patterns in developing worker bees. Our data revealed that the expression of nearly 1,400 genes was altered in response to dsRNA-GFP, representing around 10% of known honey bee genes. Expression changes appear to be the result of both direct off-target effects and indirect downstream secondary effects; indeed, there were several instances of sequence similarity between putative siRNAs generated from the dsRNA-GFP construct and genes whose expression levels were altered. In general, the affected genes are involved in important developmental and metabolic processes associated with RNA processing and transport, hormone metabolism, immunity, response to external stimulus and to stress. These results suggest that multiple dsRNA controls should be employed in RNAi studies in honey bees. Furthermore, any RNAi studies involving these genes affected by dsRNA-GFP in our studies should use a different dsRNA control.

12.
PLoS One ; 6(12): e29006, 2011.
Article in English | MEDLINE | ID: mdl-22205988

ABSTRACT

Insect hexamerins have long been known as storage proteins that are massively synthesized by the larval fat body and secreted into hemolymph. Following the larval-to-pupal molt, hexamerins are sequestered by the fat body via receptor-mediated endocytosis, broken up, and used as amino acid resources for metamorphosis. In the honey bee, the transcript and protein subunit of a hexamerin, HEX 70a, were also detected in ovaries and testes. Aiming to identify the subcellular localization of HEX 70a in the female and male gonads, we used a specific antibody in whole mount preparations of ovaries and testes for analysis by confocal laser-scanning microscopy. Intranuclear HEX 70a foci were evidenced in germ and somatic cells of ovarioles and testioles of pharate-adult workers and drones, suggesting a regulatory or structural role. Following injection of the thymidine analog EdU we observed co-labeling with HEX 70a in ovariole cell nuclei, inferring possible HEX 70a involvement in cell proliferation. Further support to this hypothesis came from an injection of anti-HEX 70a into newly ecdysed queen pupae where it had a negative effect on ovariole thickening. HEX 70a foci were also detected in ovarioles of egg laying queens, particularly in the nuclei of the highly polyploid nurse cells and in proliferating follicle cells. Additional roles for this storage protein are indicated by the detection of nuclear HEX 70a foci in post-meiotic spermatids and spermatozoa. Taken together, these results imply undescribed roles for HEX 70a in the developing gonads of the honey bee and raise the possibility that other hexamerins may also have tissue specific functions.


Subject(s)
Bees/metabolism , Cell Nucleus/metabolism , Insect Proteins/metabolism , Ovary/cytology , Ovary/growth & development , Testis/cytology , Testis/growth & development , Actins/metabolism , Animals , Antibodies/immunology , Bees/cytology , Bees/growth & development , Bees/physiology , Female , Gene Expression Regulation, Developmental , Insect Proteins/immunology , Male , Ovary/metabolism , Oviposition , Protein Transport , Proteins/metabolism , Testis/metabolism
13.
PLoS One ; 6(5): e20513, 2011.
Article in English | MEDLINE | ID: mdl-21655217

ABSTRACT

Cuticle renewal is a complex biological process that depends on the cross talk between hormone levels and gene expression. This study characterized the expression of two genes encoding cuticle proteins sharing the four conserved amino acid blocks of the Tweedle family, AmelTwdl1 and AmelTwdl2, and a gene encoding a cuticle peroxidase containing the Animal haem peroxidase domain, Ampxd, in the honey bee. Gene sequencing and annotation validated the formerly predicted tweedle genes, and revealed a novel gene, Ampxd, in the honey bee genome. Expression of these genes was studied in the context of the ecdysteroid-coordinated pupal-to-adult molt, and in different tissues. Higher transcript levels were detected in the integument after the ecdysteroid peak that induces apolysis, coinciding with the synthesis and deposition of the adult exoskeleton and its early differentiation. The effect of this hormone was confirmed in vivo by tying a ligature between the thorax and abdomen of early pupae to prevent the abdominal integument from coming in contact with ecdysteroids released from the prothoracic gland. This procedure impaired the natural increase in transcript levels in the abdominal integument. Both tweedle genes were expressed at higher levels in the empty gut than in the thoracic integument and trachea of pharate adults. In contrast, Ampxd transcripts were found in higher levels in the thoracic integument and trachea than in the gut. Together, the data strongly suggest that these three genes play roles in ecdysteroid-dependent exoskeleton construction and differentiation and also point to a possible role for the two tweedle genes in the formation of the cuticle (peritrophic membrane) that internally lines the gut.


Subject(s)
Ecdysteroids/metabolism , Insect Proteins/metabolism , Peroxidase/metabolism , Animals , Bees , Blotting, Western , Computational Biology , Ecdysteroids/genetics , Electrophoresis, Polyacrylamide Gel , Insect Proteins/genetics , Peroxidase/genetics , Reverse Transcriptase Polymerase Chain Reaction
14.
BMC Mol Biol ; 11: 23, 2010 Mar 26.
Article in English | MEDLINE | ID: mdl-20346164

ABSTRACT

BACKGROUND: Hexamerins are hemocyanin-derived proteins that have lost the ability to bind copper ions and transport oxygen; instead, they became storage proteins. The current study aimed to broaden our knowledge on the hexamerin genes found in the honey bee genome by exploring their structural characteristics, expression profiles, evolution, and functions in the life cycle of workers, drones and queens. RESULTS: The hexamerin genes of the honey bee (hex 70a, hex 70b, hex 70c and hex 110) diverge considerably in structure, so that the overall amino acid identity shared among their deduced protein subunits varies from 30 to 42%. Bioinformatics search for motifs in the respective upstream control regions (UCRs) revealed six overrepresented motifs including a potential binding site for Ultraspiracle (Usp), a target of juvenile hormone (JH). The expression of these genes was induced by topical application of JH on worker larvae. The four genes are highly transcribed by the larval fat body, although with significant differences in transcript levels, but only hex 110 and hex 70a are re-induced in the adult fat body in a caste- and sex-specific fashion, workers showing the highest expression. Transcripts for hex 110, hex 70a and hex70b were detected in developing ovaries and testes, and hex 110 was highly transcribed in the ovaries of egg-laying queens. A phylogenetic analysis revealed that HEX 110 is located at the most basal position among the holometabola hexamerins, and like HEX 70a and HEX 70c, it shares potential orthology relationship with hexamerins from other hymenopteran species. CONCLUSIONS: Striking differences were found in the structure and developmental expression of the four hexamerin genes in the honey bee. The presence of a potential binding site for Usp in the respective 5' UCRs, and the results of experiments on JH level manipulation in vivo support the hypothesis of regulation by JH. Transcript levels and patterns in the fat body and gonads suggest that, in addition to their primary role in supplying amino acids for metamorphosis, hexamerins serve as storage proteins for gonad development, egg production, and to support foraging activity. A phylogenetic analysis including the four deduced hexamerins and related proteins revealed a complex pattern of evolution, with independent radiation in insect orders.


Subject(s)
Bees/genetics , Insect Proteins/genetics , Animals , Bees/growth & development , Bees/physiology , Gene Expression , Insect Proteins/chemistry , Juvenile Hormones/metabolism , Larva/genetics , Reproduction
15.
Insect Biochem Mol Biol ; 40(3): 241-51, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20184957

ABSTRACT

In insects, exoskeleton (cuticle) formation at each molt cycle includes complex biochemical pathways wherein the laccase enzymes (EC 1.10.3.2) may have a key role. We identified an Amlac2 gene that encodes a laccase2 in the honey bee, Apis mellifera, and investigated its function in exoskeleton differentiation. The Amlac2 gene consists of nine exons resulting in an ORF of 2193 nucleotides. The deduced translation product is a 731 amino acid protein of 81.5 kDa and a pI of 6.05. Amlac2 is highly expressed in the integument of pharate adults, and the expression precedes the onset of cuticle pigmentation and the intensification of sclerotization. In accordance with the temporal sequence of exoskeleton differentiation from anterior to posterior direction, the levels of Amlac2 transcript increase earlier in the thoracic than in the abdominal integument. The gene expression lasts even after the bees emerge from brood cells and begin activities in the nest, but declines after the transition to foraging stage, suggesting that maturation of the exoskeleton is completed at this stage. Post-transcriptional knockdown of Amlac2 gene expression resulted in structural abnormalities in the exoskeleton and drastically affected adult eclosion. By setting a ligature between the thorax and abdomen of early pupae we could delay the increase in hemolymph ecdysteroid levels in the abdomen. This severely impaired the increase in Amlac2 transcript levels and also the differentiation of the abdominal exoskeleton. Taken together, these results indicate that Amlac2 expression is controlled by ecdysteroids and has a critical role in the differentiation of the adult exoskeleton of honey bees.


Subject(s)
Bees/enzymology , Ecdysteroids/metabolism , Gene Expression Regulation, Developmental , Insect Proteins/metabolism , Laccase/metabolism , Amino Acid Sequence , Animals , Bees/genetics , Down-Regulation , Gene Knockdown Techniques , Insect Proteins/genetics , Laccase/genetics , Ligation , Molecular Sequence Data , RNA Interference
16.
Arch Insect Biochem Physiol ; 71(2): 70-87, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19309002

ABSTRACT

Proteins stored in insect hemolymph may serve as a source of amino acids and energy for metabolism and development. The expression of the main storage proteins was assessed in bacterial-challenged honey bees using real-time (RT)-PCR and Western blot. After ensuring that the immune system had been activated by measuring the ensuing expression of the innate immune response genes, defensin-1 (def-1) and prophenoloxidase (proPO), we verified the expression of four genes encoding storage proteins. The levels of vitellogenin (vg) mRNA and of the respective protein were significantly lowered in bees injected with bacteria or water only (injury). An equivalent response was observed in orally-infected bees. The levels of apolipophorin II/I (apoLp-II/I) and hexamerin (hex 70a) mRNAs did not significantly change, but levels of Hex 70a protein subunit showed a substantial decay after bacterial challenge or injury. Infection also caused a strong reduction in the levels of apoLp-III transcripts. Our findings are consistent with a down-regulation of the expression and accumulation of storage proteins as a consequence of activation of the immune system, suggesting that this phenomenon represents a strategy to redirect resources to combat injury or infection.


Subject(s)
Bacterial Infections/immunology , Bees/genetics , Hemolymph/immunology , Insect Proteins/genetics , Animals , Apolipoproteins/genetics , Apolipoproteins/immunology , Apolipoproteins/metabolism , Bacterial Infections/metabolism , Bees/immunology , Bees/metabolism , Catechol Oxidase/genetics , Catechol Oxidase/immunology , Catechol Oxidase/metabolism , Defensins/immunology , Defensins/metabolism , Enzyme Precursors/genetics , Enzyme Precursors/immunology , Enzyme Precursors/metabolism , Female , Gene Expression Regulation , Hemolymph/metabolism , Insect Proteins/immunology , Insect Proteins/metabolism , RNA/analysis , RNA, Messenger/analysis , Species Specificity , Stress, Physiological/genetics , Stress, Physiological/immunology , Vitellogenins/genetics , Vitellogenins/immunology , Vitellogenins/metabolism
17.
J Insect Physiol ; 54(6): 1035-40, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18511064

ABSTRACT

Ecdysteroids regulate many aspects of insect physiology after binding to a heterodimer composed of the nuclear hormone receptor proteins ecdysone receptor (EcR) and ultraspiracle (Usp). Several lines of evidence have suggested that the latter also plays important roles in mediating the action of juvenile hormone (JH) and, thus, integrates signaling by the two morphogenetic hormones. By using an RNAi approach, we show here that Usp participates in the mechanism that regulates the progression of pupal development in Apis mellifera, as indicated by the observed pupal developmental delay in usp knocked-down bees. Knock-down experiments also suggest that the expression of regulatory genes such as ftz transcription factor 1 (ftz-f1) and juvenile hormone esterase (jhe) depend on Usp. Vitellogenin (vg), the gene coding the main yolk protein in honeybees, does not seem to be under Usp regulation, thus suggesting that the previously observed induction of vg expression by JH during the last stages of pupal development is mediated by yet unknown transcription factor complexes.


Subject(s)
Bees/growth & development , Bees/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Developmental , Transcription Factors/metabolism , Animals , Bees/metabolism , DNA-Binding Proteins/genetics , Down-Regulation , Drosophila Proteins , Fat Body/metabolism , Female , Phenotype , Pupa/growth & development , Pupa/metabolism , RNA Interference , Transcription Factors/genetics
18.
Arch Insect Biochem Physiol ; 67(2): 97-106, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18076110

ABSTRACT

Farnesoic acid O-methyl transferase (FAMeT) is the enzyme that catalyzes the formation of methyl farnesoate (MF) from farnesoic acid (FA) in the biosynthetic pathway of juvenile hormone (JH). This work reports the cloning, sequencing, and expression of FAMeT gene from the stingless bee Melipona scutellaris (MsFAMeT). The MsFAMeT in silico analysis showed that greatest sequence similarity is found in Apis mellifera and other insects, while relatively less similarity is shown in crustaceans. Evidence of alternative splicing of a 27 nucleotide (nt) microexon explains the presence of the detected isoforms, 1 and 2. The expression analysis of the two isoforms showed a marked difference when castes were compared, suggesting that they could be involved differently in the JH metabolism in M. scutellaris, providing new insights for the comprehension of female plasticity.


Subject(s)
Bees/physiology , Gene Expression Regulation, Developmental/physiology , Methyltransferases/biosynthesis , Methyltransferases/genetics , Amino Acid Sequence , Animals , Base Sequence , Bees/classification , Bees/enzymology , Bees/genetics , Female , Gene Expression Regulation, Developmental/genetics , Isoenzymes/biosynthesis , Isoenzymes/chemistry , Isoenzymes/genetics , Larva/physiology , Methyltransferases/chemistry , Molecular Sequence Data , Pupa/physiology , Sequence Alignment , Sesquiterpenes/metabolism
19.
Insect Biochem Mol Biol ; 37(12): 1272-82, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17967346

ABSTRACT

A cDNA encoding a cuticle protein containing the R&R Consensus was characterized in the honeybee integument. AmelCPR14 developmental expression is distinguished by an on-off-on pattern, the transition from a low to a high level of transcripts occurring as the ecdysteroid titer is declining after the peak that triggers the onset of pharate (pupal and adult) development. The transcript is abundant during cuticle tanning and sclerotization, and persists even in the adult integument, suggesting that the corresponding protein is required for differentiation and maintenance of the adult cuticle. Such developmental pattern suggested that AmelCPR14 gene might be regulated by the titer of ecdysteroids. We confirmed this hypothesis using different experimental strategies. By tying a ligature in early pupae to prevent exposure of abdominal integument to a high ecdysteroid titer, we delayed the accumulation of AmelCPR14 transcripts in the abdominal integument. This is consistent with ecdysteroid priming being required in pupae for the increase in AmelCPR14 expression in pharate adults. By injecting 20-hydroxyecdysone (20E) in early pupae we demonstrated that hormone titer decay after the peak is critical for AmelCPR14 expression induction. Exposure of pupal integument in vitro to a 20E concentration mimicking the pupal ecdysteroid peak repressed AmelCPR14 expression, which was recovered by hormone removal. Taken together, these data are consistent with an ecdysteroid pulse (increase in hormone titer followed by its decline) being critical for a high AmelCPR14 gene expression in pharate adults.


Subject(s)
Bees/metabolism , Ecdysteroids/metabolism , Gene Expression Regulation, Developmental , Insect Proteins/metabolism , Abdomen/physiology , Amino Acid Sequence , Animals , Bees/genetics , Bees/growth & development , Down-Regulation , Insect Proteins/chemistry , Insect Proteins/genetics , Molecular Sequence Data , Sequence Alignment , Sequence Analysis, DNA , Thorax/metabolism
20.
BMC Dev Biol ; 7: 70, 2007 Jun 18.
Article in English | MEDLINE | ID: mdl-17577409

ABSTRACT

BACKGROUND: In honeybees, differential feeding of female larvae promotes the occurrence of two different phenotypes, a queen and a worker, from identical genotypes, through incremental alterations, which affect general growth, and character state alterations that result in the presence or absence of specific structures. Although previous studies revealed a link between incremental alterations and differential expression of physiometabolic genes, the molecular changes accompanying character state alterations remain unknown. RESULTS: By using cDNA microarray analyses of >6,000 Apis mellifera ESTs, we found 240 differentially expressed genes (DEGs) between developing queens and workers. Many genes recorded as up-regulated in prospective workers appear to be unique to A. mellifera, suggesting that the workers' developmental pathway involves the participation of novel genes. Workers up-regulate more developmental genes than queens, whereas queens up-regulate a greater proportion of physiometabolic genes, including genes coding for metabolic enzymes and genes whose products are known to regulate the rate of mass-transforming processes and the general growth of the organism (e.g., tor). Many DEGs are likely to be involved in processes favoring the development of caste-biased structures, like brain, legs and ovaries, as well as genes that code for cytoskeleton constituents. Treatment of developing worker larvae with juvenile hormone (JH) revealed 52 JH responsive genes, specifically during the critical period of caste development. Using Gibbs sampling and Expectation Maximization algorithms, we discovered eight overrepresented cis-elements from four gene groups. Graph theory and complex networks concepts were adopted to attain powerful graphical representations of the interrelation between cis-elements and genes and objectively quantify the degree of relationship between these entities. CONCLUSION: We suggest that clusters of functionally related DEGs are co-regulated during caste development in honeybees. This network of interactions is activated by nutrition-driven stimuli in early larval stages. Our data are consistent with the hypothesis that JH is a key component of the developmental determination of queen-like characters. Finally, we propose a conceptual model of caste differentiation in A. mellifera based on gene-regulatory networks.


Subject(s)
Bees , Behavior, Animal/physiology , Gene Expression Regulation, Developmental , Genes, Insect , Hierarchy, Social , Animals , Bees/anatomy & histology , Bees/genetics , Bees/physiology , Expressed Sequence Tags , Female , Gene Expression Profiling , Gene Regulatory Networks , Juvenile Hormones/metabolism , Larva/anatomy & histology , Larva/physiology , Oligonucleotide Array Sequence Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...