Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
J Transl Med ; 22(1): 416, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698408

ABSTRACT

One of the most challenging aspects of developing advanced cell therapy products (CTPs) is defining the mechanism of action (MOA), potency and efficacy of the product. This perspective examines these concepts and presents helpful ways to think about them through the lens of metrology. A logical framework for thinking about MOA, potency and efficacy is presented that is consistent with the existing regulatory guidelines, but also accommodates what has been learned from the 27 US FDA-approved CTPs. Available information regarding MOA, potency and efficacy for the 27 FDA-approved CTPs is reviewed to provide background and perspective. Potency process and efficacy process charts are introduced to clarify and illustrate the relationships between six key concepts: MOA, potency, potency test, efficacy, efficacy endpoint and efficacy endpoint test. Careful consideration of the meaning of these terms makes it easier to discuss the challenges of correlating potency test results with clinical outcomes and to understand how the relationships between the concepts can be misunderstood during development and clinical trials. Examples of how a product can be "potent but not efficacious" or "not potent but efficacious" are presented. Two example applications of the framework compare how MOA is assessed in cell cultures, animal models and human clinical trials and reveals the challenge of establishing MOA in humans. Lastly, important considerations for the development of potency tests for a CTP are discussed. These perspectives can help product developers set appropriate expectations for understanding a product's MOA and potency, avoid unrealistic assumptions and improve communication among team members during the development of CTPs.


Subject(s)
Cell- and Tissue-Based Therapy , Humans , Cell- and Tissue-Based Therapy/methods , Animals , Treatment Outcome , United States Food and Drug Administration , United States , Clinical Trials as Topic
2.
J Biomed Mater Res A ; 111(8): 1279-1291, 2023 08.
Article in English | MEDLINE | ID: mdl-36916776

ABSTRACT

In the field of tissue engineering, 3D scaffolds and cells are often combined to yield constructs that are used as therapeutics to repair or restore tissue function in patients. Viable cells are often required to achieve the intended mechanism of action for the therapy, where the live cells may build new tissue or may release factors that induce tissue regeneration. Thus, there is a need to reliably measure cell viability in 3D scaffolds as a quality attribute of a tissue-engineered medical product. Here, we developed a noninvasive, label-free, 3D optical coherence tomography (OCT) method to rapidly (2.5 min) image large sample volumes (1 mm3 ) to assess cell viability and distribution within scaffolds. OCT imaging was assessed using a model scaffold-cell system consisting of a polysaccharide-based hydrogel seeded with human Jurkat cells. Four test systems were used: hydrogel seeded with live cells, hydrogel seeded with heat-shocked or fixed dead cells and hydrogel without any cells. Time series OCT images demonstrated changes in the time-dependent speckle patterns due to refractive index (RI) variations within live cells that were not observed for pure hydrogel samples or hydrogels with dead cells. The changes in speckle patterns were used to generate live-cell contrast by image subtraction. In this way, objects with large changes in RI were binned as live cells. Using this approach, on average, OCT imaging measurements counted 326 ± 52 live cells per 0.288 mm3 for hydrogels that were seeded with 288 live cells (as determined by the acridine orange-propidium iodide cell counting method prior to seeding cells in gels). Considering the substantial uncertainties in fabricating the scaffold-cell constructs, such as the error from pipetting and counting cells, a 13% difference in the live-cell count is reasonable. Additionally, the 3D distribution of live cells was mapped within a hydrogel scaffold to assess the uniformity of their distribution across the volume. Our results demonstrate a real-time, noninvasive method to rapidly assess the spatial distribution of live cells within a 3D scaffold that could be useful for assessing tissue-engineered medical products.


Subject(s)
Tissue Engineering , Tomography, Optical Coherence , Humans , Tissue Engineering/methods , Cell Survival , Tissue Scaffolds , Hydrogels/pharmacology
3.
Front Physiol ; 14: 1119368, 2023.
Article in English | MEDLINE | ID: mdl-36875017

ABSTRACT

Endochondral bone development and regeneration relies on activation and proliferation of periosteum derived-cells (PDCs). Biglycan (Bgn), a small proteoglycan found in extracellular matrix, is known to be expressed in bone and cartilage, however little is known about its influence during bone development. Here we link biglycan with osteoblast maturation starting during embryonic development that later affects bone integrity and strength. Biglycan gene deletion reduced the inflammatory response after fracture, leading to impaired periosteal expansion and callus formation. Using a novel 3D scaffold with PDCs, we found that biglycan could be important for the cartilage phase preceding bone formation. The absence of biglycan led to accelerated bone development with high levels of osteopontin, which appeared to be detrimental to the structural integrity of the bone. Collectively, our study identifies biglycan as an influencing factor in PDCs activation during bone development and bone regeneration after fracture.

4.
J Biomed Mater Res A ; 111(1): 106-117, 2023 01.
Article in English | MEDLINE | ID: mdl-36194510

ABSTRACT

The properties and structure of the cellular microenvironment can influence cell behavior. Sites of cell adhesion to the extracellular matrix (ECM) initiate intracellular signaling that directs cell functions such as proliferation, differentiation, and apoptosis. Electrospun fibers mimic the fibrous nature of native ECM proteins and cell culture in fibers affects cell shape and dimensionality, which can drive specific functions, such as the osteogenic differentiation of primary human bone marrow stromal cells (hBMSCs), by. In order to probe how scaffolds affect cell shape and behavior, cell-fiber contacts were imaged to assess their shape and dimensionality through a novel approach. Fluorescent polymeric fiber scaffolds were made so that they could be imaged by confocal fluorescence microscopy. Fluorescent polymer films were made as a planar control. hBSMCs were cultured on the fluorescent substrates and the cells and substrates were imaged. Two different image analysis approaches, one having geometrical assumptions and the other having statistical assumptions, were used to analyze the 3D structure of cell-scaffold contacts. The cells cultured in scaffolds contacted the fibers in multiple planes over the surface of the cell, while the cells cultured on films had contacts confined to the bottom surface of the cell. Shape metric analysis indicated that cell-fiber contacts had greater dimensionality and greater 3D character than the cell-film contacts. These results suggest that cell adhesion site-initiated signaling could emanate from multiple planes over the cell surface during culture in fibers, as opposed to emanating only from the cell's basal surface during culture on planar surfaces.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Humans , Tissue Scaffolds/chemistry , Cell Differentiation , Extracellular Matrix/metabolism , Cells, Cultured , Tissue Engineering/methods , Bone Marrow Cells
5.
PLoS One ; 17(1): e0262119, 2022.
Article in English | MEDLINE | ID: mdl-35045103

ABSTRACT

Cell viability, an essential measurement for cell therapy products, lacks traceability. One of the most common cell viability tests is trypan blue dye exclusion where blue-stained cells are counted via brightfield imaging. Typically, live and dead cells are classified based on their pixel intensities which may vary arbitrarily making it difficult to compare results. Herein, a traceable absorbance microscopy method to determine the intracellular uptake of trypan blue is demonstrated. The intensity pixels of the brightfield images are converted to absorbance images which are used to calculate moles of trypan blue per cell. Trypan blue cell viability measurements, where trypan blue content in each cell is quantified, enable traceable live-dead classifications. To implement the absorbance microscopy method, we developed an open-source AbsorbanceQ application that generates quantitative absorbance images. The validation of absorbance microscopy is demonstrated using neutral density filters. Results from four different microscopes demonstrate a mean absolute deviation of 3% from the expected optical density values. When assessing trypan blue-stained Jurkat cells, the difference in intracellular uptake of trypan blue in heat-shock-killed cells using two different microscopes is 3.8%. Cells killed with formaldehyde take up ~50% less trypan blue as compared to the heat-shock-killed cells, suggesting that the killing mechanism affects trypan blue uptake. In a test mixture of approximately 50% live and 50% dead cells, 53% of cells were identified as dead (±6% standard deviation). Finally, to mimic batches of low-viability cells that may be encountered during a cell manufacturing process, viability was assessed for cells that were 1) overgrown in the cell culture incubator for five days or 2) incubated in DPBS at room temperature for five days. Instead of making live-dead classifications using arbitrary intensity values, absorbance imaging yields traceable units of moles that can be compared, which is useful for assuring quality for biomanufacturing processes.


Subject(s)
Cell Culture Techniques/methods , Jurkat Cells/cytology , Trypan Blue/chemistry , Cell Count , Cell Survival/drug effects , Formaldehyde/adverse effects , Humans , Jurkat Cells/chemistry , Microscopy
6.
Health Care Manag Sci ; 25(2): 222-236, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34643847

ABSTRACT

A recent Institute of Medicine Report calls for explicit modeling of smoking initiation, cessation and addiction processes. We introduce a model of smoking initiation that explicitly teases out the percentage of initiation due to social pressures, which we call "peer-imitation," and the percentage due to other factors, such as media ads, family smoking, and psychological factors, which we call "self-initiation." We propose a dynamic non-linear behavioral contagion model of smoking initiation and employ data from the National Survey on Drug Use and Health to estimate the relative contributions of imitation and self-initiation to the overall smoking initiation process. Although the percent of total smoking due to peer imitation has been trending downward over time, it remains higher than the percent due to self-initiation. We note unexpected changes for the 2007 cohort, and we discuss possible implications for intervention and for the spread of e-cigarettes.


Subject(s)
Electronic Nicotine Delivery Systems , Humans , Imitative Behavior , Peer Group , Smoking/epidemiology , Smoking/psychology , Systems Analysis
7.
Article in English | MEDLINE | ID: mdl-37051051

ABSTRACT

Purpose of Review: Cell and tissue products do not just reflect their present conditions; they are the culmination of all they have encountered over time. Currently, routine cell culture practices subject cell and tissue products to highly variable and non-physiologic conditions. This article defines five cytocentric principles that place the conditions for cells at the core of what we do for better reproducibility in Regenerative Medicine. Recent Findings: There is a rising awareness of the cell environment as a neglected, but critical variable. Recent publications have called for controlling culture conditions for better, more reproducible cell products. Summary: Every industry has basic quality principles for reproducibility. Cytocentric principles focus on the fundamental needs of cells: protection from contamination, physiologic simulation, and full-time conditions for cultures that are optimal, individualized, and dynamic. Here, we outline the physiologic needs, the technologies, the education, and the regulatory support for the cytocentric principles in regenerative medicine.

8.
J R Soc Interface ; 18(184): 20210648, 2021 11.
Article in English | MEDLINE | ID: mdl-34814729

ABSTRACT

We present methods for building a Java Runtime-Alterable-Model Platform (RAMP) of complex dynamical systems. We illustrate our methods by building a multivariant SEIR (epidemic) RAMP. Underlying our RAMP is an individual-based model that includes adaptive contact rates, pathogen genetic drift, waning and cross-immunity. Besides allowing parameter values, process descriptions and scriptable runtime drivers to be easily modified during simulations, our RAMP can used within R-Studio and other computational platforms. Process descriptions that can be runtime altered within our SEIR RAMP include pathogen variant-dependent host shedding, environmental persistence, host transmission and within-host pathogen mutation and replication. They also include adaptive social distancing and adaptive application of vaccination rates and variant-valency of vaccines. We present simulation results using parameter values and process descriptions relevant to the current COVID-19 pandemic. Our results suggest that if waning immunity outpaces vaccination rates, then vaccination rollouts may fail to contain the most transmissible variants, particularly if vaccine valencies are not adapted to deal with escape mutations. Our SEIR RAMP is designed for easy use by others. More generally, our RAMP concept facilitates construction of highly flexible complex systems models of all types, which can then be easily shared as stand-alone application programs.


Subject(s)
COVID-19 , Genetic Drift , Humans , Pandemics , SARS-CoV-2 , Vaccination
9.
Epidemics ; 36: 100484, 2021 09.
Article in English | MEDLINE | ID: mdl-34375814

ABSTRACT

SARS-Cov-2 escape mutations (EM) have been detected and are spreading. Vaccines may need adjustment to respond to these or future mutations. We designed a population level model integrating both waning immunity and EM. We also designed a set of criteria for elaborating and fitting this model to cross-neutralization and other data with a goal of minimizing vaccine decision errors. We formulated four related models. These differ regarding which strains can drift to escape immunity in the host when that immunity was elicited by different strains. Across changing waning and escape mutation parameter values, these model variations led to patterns where: 1) EM are rare in the first epidemic, 2) rebound outbreaks after the first outbreak are accelerated by increasing waning and by increasing drifting, 3) the long term endemic level of infection is determined mostly by waning rates with small effects of the drifting parameter, 4) EM caused loss of vaccine effectiveness, and under some conditions: vaccines induced EM that caused higher levels of infection with vaccines than without them. The differences and similarities across the four models suggest paths for developing models specifying the epitopes where EM act. This model provides a base on which to construct epitope specific evolutionary models using new high-throughput assay data from population samples to guide vaccine decisions.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Mutation/genetics , Vaccination
11.
ACS Biomater Sci Eng ; 6(10): 5368-5376, 2020 10 12.
Article in English | MEDLINE | ID: mdl-33320558

ABSTRACT

A metrological perspective for thinking about the characterization of tissue engineered medical products (TEMPs) may help improve communication between researchers. During the development lifecycle of a TEMP, many product properties are measured over the long path to a product release. The selection of each measurement is designed to establish that the product is safe and efficacious (i.e., successful). However, there is often miscommunication during discussions of product characterization. The miscommunication stems from inherent assumptions that are made about the measurements. A "measurand chart" can help clarify these assumptions to enable a more coherent discussion of the value of each measurement. A measurand is defined as "the quantity or property intended to be measured". Tissue engineering measurands are discussed in terms of three case studies including "cell viability in a scaffold", "potency", and "biocompatibility". Topics including a measurement model, defining tissue engineering measurands and definitional uncertainty, are discussed to further refine thinking about tissue engineering measurands. Awareness of these concepts while discussing product characterization can enhance communication and strategic thinking so that the resulting plan is clear and purposeful.


Subject(s)
Tissue Engineering , Uncertainty
12.
Article in English | MEDLINE | ID: mdl-32864421

ABSTRACT

Predicting Retinal Pigment Epithelium (RPE) cell functions in stem cell implants using non-invasive bright field microscopy imaging is a critical task for clinical deployment of stem cell therapies. Such cell function predictions can be carried out using Artificial Intelligence (AI) based models. In this paper we used Traditional Machine Learning (TML) and Deep Learning (DL) based AI models for cell function prediction tasks. TML models depend on feature engineering and DL models perform feature engineering automatically but have higher modeling complexity. This work aims at exploring the tradeoffs between three approaches using TML and DL based models for RPE cell function prediction from microscopy images and at understanding the accuracy relationship between pixel-, cell feature-, and implant label-level accuracies of models. Among the three compared approaches to cell function prediction, the direct approach to cell function prediction from images is slightly more accurate in comparison to indirect approaches using intermediate segmentation and/or feature engineering steps. We also evaluated accuracy variations with respect to model selections (five TML models and two DL models) and model configurations (with and without transfer learning). Finally, we quantified the relationships between segmentation accuracy and the number of samples used for training a model, segmentation accuracy and cell feature error, and cell feature error and accuracy of implant labels. We concluded that for the RPE cell data set, there is a monotonic relationship between the number of training samples and image segmentation accuracy, and between segmentation accuracy and cell feature error, but there is no such a relationship between segmentation accuracy and accuracy of RPE implant labels.

13.
PLoS One ; 15(3): e0228990, 2020.
Article in English | MEDLINE | ID: mdl-32176717

ABSTRACT

Life history theory examines how characteristics of organisms, such as age and size at maturity, may vary through natural selection as evolutionary responses that optimize fitness. Here we ask how predictions of age and size at maturity differ for the three classical fitness functions-intrinsic rate of natural increase r, net reproductive rate R0, and reproductive value Vx-for semelparous species. We show that different choices of fitness functions can lead to very different predictions of species behavior. In one's efforts to understand an organism's behavior and to develop effective conservation and management policies, the choice of fitness function matters. The central ingredient of our approach is the maturation reaction norm (MRN), which describes how optimal age and size at maturation vary with growth rate or mortality rate. We develop a practical geometric construction of MRNs that allows us to include different growth functions (linear growth and nonlinear von Bertalanffy growth in length) and develop two-dimensional MRNs useful for quantifying growth-mortality trade-offs. We relate our approach to Beverton-Holt life history invariants and to the Stearns-Koella categorization of MRNs. We conclude with a detailed discussion of life history parameters for Great Lakes Chinook Salmon and demonstrate that age and size at maturity are consistent with predictions using R0 (but not r or Vx) as the underlying fitness function.


Subject(s)
Genetic Fitness , Salmon/physiology , Animals , Biological Evolution , Body Size , Conservation of Natural Resources/methods , Female , Lakes , Male , Models, Biological , Salmon/genetics , Selection, Genetic , Sexual Maturation
14.
Stem Cells Transl Med ; 9(7): 728-733, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32222115

ABSTRACT

The Regenerative Medicine Manufacturing Society (RMMS) is the first and only professional society dedicated toward advancing manufacturing solutions for the field of regenerative medicine. RMMS's vision is to provide greater patient access to regenerative medicine therapies through innovative manufacturing solutions. Our mission is to identify unmet needs and gaps in regenerative medicine manufacturing and catalyze the generation of new ideas and solutions by working with private and public stakeholders. We aim to accomplish our mission through outreach and education programs and securing grants for public-private collaborations in regenerative medicine manufacturing. This perspective will cover four impact areas that the society's leadership team has identified as critical: (a) cell manufacturing and scale-up/out, respectively, for allogeneic and autologous cell therapies, (b) standards for regenerative medicine, (c) 3D bioprinting, and (d) artificial intelligence-enabled automation. In addition to covering these areas and ways in which the society intends to advance the field in a collaborative nature, we will also discuss education and training. Education and training is an area that is critical for communicating the current challenges, developing solutions to accelerate the commercialization of the latest technological advances, and growing the workforce in the rapidly expanding sector of regenerative medicine.


Subject(s)
Artificial Intelligence/standards , Automation/methods , Bioprinting/methods , Education/methods , Printing, Three-Dimensional/standards , Regenerative Medicine/methods , Tissue Engineering/methods , Humans , Treatment Outcome
15.
J Biomed Mater Res B Appl Biomater ; 108(5): 2063-2072, 2020 07.
Article in English | MEDLINE | ID: mdl-31880376

ABSTRACT

A critical component of many tissue-engineered medical products (TEMPs) is the scaffold or biomaterial. The industry's understanding of scaffold properties and their influence on cell behavior has advanced, but our technical capability to reliably characterize scaffolds requires improvement, especially to enable large-scale manufacturing. In response to the key findings from the 2013 ASTM International Workshop of Standards and Measurements for Tissue Engineering Scaffolds, the National Institute of Standards and Technology (NIST), ASTM International, BiofabUSA, and the Standards Coordinating Body (SCB) organized a workshop in 2018 titled, "Characterization of Fiber-Based Scaffolds". The goal was to convene a group of 40 key industry stakeholders to identify major roadblocks in measurements of fiber-based scaffold properties. This report provides an overview of the findings from this collaborative workshop. The four major consensus findings were that (a) there is need for a documentary standard guide that would aid developers in the selection of test methods for characterizing fiber-based scaffolds; (b) there is a need for a strategy to assess the quality of porosity and pore size measurements, which could potentially be ameliorated by the development of a reference material; (b) there are challenges with the lexicon used to describe and assess scaffolds; and (d) the vast array of product applications makes it challenging to identify consensus test methods. As a result of these findings, a working group was formed to develop an ASTM Standard Guide for Characterizing Fiber-Based Constructs that will provide developers guidance on selecting measurements for characterizing fiber-based scaffolds.


Subject(s)
Biocompatible Materials/chemistry , Biocompatible Materials/standards , Tissue Scaffolds/chemistry , Tissue Scaffolds/standards , Animals , Guidelines as Topic , Humans , Mechanical Phenomena , Nanofibers/chemistry , Porosity , Surface Properties , Tissue Engineering
16.
J Clin Invest ; 130(2): 1010-1023, 2020 02 03.
Article in English | MEDLINE | ID: mdl-31714897

ABSTRACT

Increases in the number of cell therapies in the preclinical and clinical phases have prompted the need for reliable and noninvasive assays to validate transplant function in clinical biomanufacturing. We developed a robust characterization methodology composed of quantitative bright-field absorbance microscopy (QBAM) and deep neural networks (DNNs) to noninvasively predict tissue function and cellular donor identity. The methodology was validated using clinical-grade induced pluripotent stem cell-derived retinal pigment epithelial cells (iPSC-RPE). QBAM images of iPSC-RPE were used to train DNNs that predicted iPSC-RPE monolayer transepithelial resistance, predicted polarized vascular endothelial growth factor (VEGF) secretion, and matched iPSC-RPE monolayers to the stem cell donors. DNN predictions were supplemented with traditional machine-learning algorithms that identified shape and texture features of single cells that were used to predict tissue function and iPSC donor identity. These results demonstrate noninvasive cell therapy characterization can be achieved with QBAM and machine learning.


Subject(s)
Cell Differentiation , Deep Learning , Image Processing, Computer-Assisted , Induced Pluripotent Stem Cells , Microscopy , Retinal Pigment Epithelium , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Retinal Pigment Epithelium/cytology , Retinal Pigment Epithelium/metabolism
17.
Leukemia ; 33(12): 2924-2933, 2019 12.
Article in English | MEDLINE | ID: mdl-31092894

ABSTRACT

PIM447, a novel pan-PIM inhibitor, has shown preclinical activity in multiple myeloma (MM). In the multicenter, open-label, first-in-human study, patients with relapsed and/or refractory MM were enrolled to determine the maximum-tolerated dose (MTD) or recommended dose (RD), safety, pharmacokinetics, and preliminary anti-myeloma activity of PIM447. PIM447 was administered in escalating oral doses of 70-700 mg once daily (q.d.) for 28-day continuous cycles. Seventy-nine patients with a median of four prior therapies were enrolled. Seventy-seven patients (97.5%) had an adverse event (AE) suspected as treatment related, with treatment-related grade 3/4 AEs being mostly hematologic. Eleven dose-limiting toxicities occurred, and an MTD of 500 mg q.d. and an RD of 300 mg q.d. were established. The main reason for discontinuation was disease progression in 54 patients (68.4%). In the entire study population, a disease control rate of 72.2%, a clinical benefit rate of 25.3%, and an overall response rate of 8.9% were observed per modified International Myeloma Working Group criteria. Median progression-free survival at the RD was 10.9 months. PIM447 was well tolerated and demonstrated single-agent antitumor activity in relapsed/refractory MM patients, providing proof of principle for Pim (Proviral Insertions of Moloney Murine leukemia virus) kinase inhibition as a novel therapeutic approach in MM.


Subject(s)
Antineoplastic Agents/therapeutic use , Multiple Myeloma/drug therapy , Multiple Myeloma/pathology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Adult , Aged , Aged, 80 and over , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/adverse effects , Antineoplastic Agents/pharmacokinetics , Drug Monitoring , Drug Resistance , Female , Humans , Male , Middle Aged , Multiple Myeloma/metabolism , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/pharmacokinetics , Recurrence , Treatment Outcome
18.
PLoS One ; 14(3): e0213339, 2019.
Article in English | MEDLINE | ID: mdl-30835766

ABSTRACT

PURPOSE: To compare the diagnostic performance and raters´confidence of radiography, radiography equivalent dose multi-detector computed tomography (RED-MDCT) and radiography equivalent dose cone beam computed tomography (RED-CBCT) for finger fractures. METHODS: Fractures were inflicted artificially and randomly to 10 cadaveric hands of body donors. Radiography as well as RED-MDCT and RED-CBCT imaging were performed at dose settings equivalent to radiography. Images were de-identified and analyzed by three radiologists regarding finger fractures, joint involvement and confidence with their findings. Reference standard was consensus reading by two radiologists of the fracturing protocol and high-dose multi-detector computed tomography (MDCT) images. Sensitivity and specificity were calculated and compared with Cochrane´s Q and post hoc analysis. Rater´s confidence was calculated with Friedman Test and post hoc Nemenyi Test. RESULTS: Rater´s confidence, inter-rater correlation, specificity for fractures and joint involvement were higher in RED-MDCT and RED-CBCT compared to radiography. No differences between the modalities were found regarding sensitivity. CONCLUSION: In this phantom study, radiography equivalent dose computed tomography (RED-CT) demonstrates a partly higher diagnostic accuracy than radiography. Implementing RED-CT in the diagnostic work-up of finger fractures could improve diagnostics, support correct classification and adequate treatment. Clinical studies should be performed to confirm these preliminary results.


Subject(s)
Cone-Beam Computed Tomography/methods , Finger Injuries/diagnosis , Fractures, Bone/diagnosis , Multidetector Computed Tomography/methods , Phantoms, Imaging , Radiography/methods , Finger Injuries/diagnostic imaging , Fractures, Bone/diagnostic imaging , Humans , Radiation Dosage
19.
Biomaterials ; 186: 31-43, 2018 12.
Article in English | MEDLINE | ID: mdl-30278344

ABSTRACT

Ectopic bone formation in mice is the gold standard for evaluation of osteogenic constructs. By regular procedures, usually only 4 constructs can be accommodated per mouse, limiting screening power. Combinatorial cassettes (combi-cassettes) hold up to 19 small, uniform constructs from the time of surgery, through time in vivo, and subsequent evaluation. Two types of bone tissue engineering constructs were tested in the combi-cassettes: i) a cell-scaffold construct containing primary human bone marrow stromal cells with hydroxyapatite/tricalcium phosphate particles (hBMSCs + HA/TCP) and ii) a growth factor-scaffold construct containing bone morphogenetic protein 2 in a gelatin sponge (BMP2+GS). Measurements of bone formation by histology, bone formation by X-ray microcomputed tomography (µCT) and gene expression by quantitative polymerase chain reaction (qPCR) showed that constructs in combi-cassettes were similar to those created by regular procedures. Combi-cassettes afford placement of multiple replicates of multiple formulations into the same animal, which enables, for the first time, rigorous statistical assessment of: 1) the variability for a given formulation within an animal (intra-animal variability), 2) differences between different tissue-engineered formulations within the same animal and 3) the variability for a given formulation in different animals (inter-animal variability). Combi-cassettes enable a more high-throughput, systematic approach to in vivo studies of tissue engineering constructs.


Subject(s)
Bone Substitutes/chemistry , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Animals , Bone Morphogenetic Protein 2/chemistry , Bone Substitutes/metabolism , Calcium Phosphates/chemistry , Cells, Cultured , Durapatite/chemistry , Female , Gelatin/chemistry , Humans , Mesenchymal Stem Cells/cytology , Mice , Osteogenesis , Polytetrafluoroethylene/chemistry , Porosity
20.
Biomed Mater ; 13(2): 025012, 2018 01 30.
Article in English | MEDLINE | ID: mdl-29072579

ABSTRACT

In living systems, it is frequently stated that form follows function by virtue of evolutionary pressures on organism development, but in the study of how functions emerge at the cellular level, function often follows form. We study this chicken versus egg problem of emergent structure-property relationships in living systems in the context of primary human bone marrow stromal cells cultured in a variety of microenvironments that have been shown to cause distinct patterns of cell function and differentiation. Through analysis of a publicly available catalog of three-dimensional (3D) cell shape data, we introduce a family of metrics to characterize the 'form' of the cell populations that emerge from a variety of diverse microenvironments. In particular, measures of form are considered that are expected to have direct significance for cell function, signaling and metabolic activity: dimensionality, polarizability and capacitance. Dimensionality was assessed by an intrinsic measure of cell shape obtained from the polarizability tensor. This tensor defines ellipsoids for arbitrary cell shapes and the thinnest dimension of these ellipsoids, P 1, defines a reference minimal scale for cells cultured in a 3D microenvironment. Polarizability governs the electric field generated by a cell, and determines the cell's ability to detect electric fields. Capacitance controls the shape dependence of the rate at which diffusing molecules contact the surface of the cell, and this has great significance for inter-cellular signaling. These results invite new approaches for designing scaffolds which explicitly direct cell dimensionality, polarizability and capacitance to guide the emergence of new cell functions derived from the acquired form.


Subject(s)
Cell Culture Techniques/methods , Cell Differentiation/drug effects , Cellular Microenvironment , Mesenchymal Stem Cells/cytology , Tissue Scaffolds/chemistry , Algorithms , Animals , Cell Nucleus/metabolism , Cell Shape , Electricity , Fibrinogen/chemistry , Humans , Mice , Microscopy, Confocal , Nanofibers/chemistry , Polystyrenes/chemistry , Probability , Signal Transduction , Thrombin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...