Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Allergy Clin Immunol ; 137(4): 1189-1196.e2, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26607704

ABSTRACT

BACKGROUND: Data on patients affected by chronic mucocutaneous candidiasis underscore the preponderant role of IL-17 receptor A (IL-17RA) in preserving mucocutaneous immunity. Little is known about the role of adenosine deaminase (ADA) 2 in regulation of immune responses, although recent reports linked ADA2 deficiency with inflammation and vasculitis. OBJECTIVE: We sought to investigate the mechanisms of chronic inflammation and vasculitis in a child lacking IL-17RA and ADA2 to identify therapeutic targets. METHODS: We report a family with 2 siblings who have had recurrent mucocutaneous infections with Candida albicans and Staphylococcus aureus and chronic inflammatory disease and vasculitis since early childhood, which were refractory to classical treatments. Array-based comparative genomic hybridization analysis showed that both siblings are homozygous for a 770-kb deletion on chr22q11.1 encompassing both IL17RA and cat eye critical region 1 (CECR1). Immunologic studies were carried out by means of flow cytometry, ELISA, and RIA. RESULTS: As expected, in the affected child we found a lack of IL-17RA expression, which implies a severe malfunction in the IL-17 signaling pathway, conferring susceptibility to recurrent mucocutaneous infections. Surprisingly, we detected an in vitro and in vivo upregulation of proinflammatory cytokines, notably IL-1ß and TNF-α, which is consistent with the persistent systemic inflammation. CONCLUSIONS: This work emphasizes the utility of whole-genome analyses combined with immunologic investigation in patients with unresolved immunodeficiency. This approach is likely to provide an insight into immunologic pathways and mechanisms of disease. It also provides molecular evidence for more targeted therapies. In addition, our report further corroborates a potential role of ADA2 in modulating immunity and inflammation.


Subject(s)
Adenosine Deaminase/deficiency , Adenosine Deaminase/genetics , Candidiasis, Chronic Mucocutaneous/genetics , Inflammation/genetics , Intercellular Signaling Peptides and Proteins/deficiency , Intercellular Signaling Peptides and Proteins/genetics , Receptors, Interleukin-17/deficiency , Receptors, Interleukin-17/genetics , Vasculitis/genetics , Adenosine Deaminase/immunology , Adolescent , Candidiasis, Chronic Mucocutaneous/complications , Candidiasis, Chronic Mucocutaneous/immunology , Child , Child, Preschool , Chronic Disease , Comparative Genomic Hybridization , Fatal Outcome , Female , Humans , Inflammation/complications , Inflammation/immunology , Intercellular Signaling Peptides and Proteins/immunology , Receptors, Interleukin-17/immunology , Sequence Deletion , Siblings , Vasculitis/complications , Vasculitis/immunology
2.
Nat Commun ; 6: 6555, 2015 Mar 24.
Article in English | MEDLINE | ID: mdl-25800347

ABSTRACT

Activation of the NLRP3 inflammasome by microbial ligands or tissue damage requires intracellular generation of reactive oxygen species (ROS). We present evidence that macrophage secretion of IL1ß upon stimulation with ATP, crystals or LPS is mediated by a rapid increase in the activity of xanthine oxidase (XO), the oxidized form of xanthine dehydrogenase, resulting in the formation of uric acid as well as ROS. We show that XO-derived ROS, but not uric acid, is the trigger for IL1ß release and that XO blockade results in impaired IL1ß and caspase1 secretion. XO is localized to both cytoplasmic and mitochondrial compartments and acts upstream to the PI3K-AKT signalling pathway that results in mitochondrial ROS generation. This pathway represents a mechanism for regulating NLRP3 inflammasome activation that may have therapeutic implications in inflammatory diseases.


Subject(s)
Carrier Proteins/immunology , Interleukin-1beta/metabolism , Macrophages/metabolism , Reactive Oxygen Species/immunology , Xanthine Dehydrogenase/genetics , Xanthine Oxidase/immunology , Animals , Autophagy , Blotting, Western , Calcium/metabolism , Calcium Phosphates/pharmacology , Carrier Proteins/drug effects , Caspase 1/immunology , Gene Knockdown Techniques , In Vitro Techniques , Lipopolysaccharides/pharmacology , Macrophages/immunology , Mice , Mice, Inbred C57BL , Monocytes , NLR Family, Pyrin Domain-Containing 3 Protein , Peritonitis/immunology , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , Uric Acid/immunology , Xanthine Dehydrogenase/antagonists & inhibitors , Xanthine Dehydrogenase/immunology
3.
Infect Immun ; 81(5): 1575-84, 2013 May.
Article in English | MEDLINE | ID: mdl-23439309

ABSTRACT

Infection with Leishmania braziliensis causes cutaneous or mucocutaneous leishmaniasis in humans. Toll-like receptor 9 (TLR9) expression has been found in granulomas of lesions in L. braziliensis-infected individuals. L. braziliensis inoculation in mice induces very small lesions that are self-healing, whereas deficiency in the TLR adaptor molecule, MyD88, renders mice susceptible to infection. The TLR involved has not been identified, prompting us to investigate if TLR9 triggering by the parasite contributes to the strong resistance to infection observed in L. braziliensis-inoculated mice. The parasites activated wild-type (WT) dendritic cells (DCs) in vitro but not DCs derived from TLR9(-/-) mice. TLR9(-/-) mice inoculated with L. braziliensis exhibited a transient susceptibility characterized by increased lesion size and parasite burden compared to those of WT mice. Surprisingly, elevated levels of gamma interferon (IFN-γ) were measured at the site of infection and in draining lymph node T cells of TLR9(-/-) mice at the peak of susceptibility, suggesting that unlike observations in vitro, the parasite could induce DC activation leading to the development of Th1 cells in the absence of TLR9 expression. Taken together, these data show that TLR9 signaling is important for the early control of lesion development and parasite burden but is dispensable for the differentiation of Th1 cells secreting IFN-γ, and the high levels of this cytokine are not sufficient to control early parasite replication following L. braziliensis infection.


Subject(s)
Leishmania braziliensis , Leishmaniasis, Cutaneous/metabolism , Toll-Like Receptor 9/physiology , Animals , Cytokines/metabolism , Disease Models, Animal , Female , Leishmaniasis, Cutaneous/immunology , Macrophages/parasitology , Mice , Mice, Inbred C57BL , Th1 Cells/immunology , Toll-Like Receptor 9/deficiency
4.
J Allergy Clin Immunol ; 131(6): 1635-43, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23006543

ABSTRACT

BACKGROUND: The exact pathogenesis of the pediatric disorder periodic fever, aphthous stomatitis, pharyngitis, cervical adenitis (PFAPA) syndrome is unknown. OBJECTIVES: We hypothesized that PFAPA might be due to dysregulated monocyte IL-1ß production linked to genetic variants in proinflammatory genes. METHODS: Fifteen patients with PFAPA syndrome were studied during and outside a febrile episode. Hematologic profile, inflammatory markers, and cytokine levels were measured in the blood. The capacity of LPS-stimulated PBMCs and monocytes to secrete IL-1ß was assessed by using ELISA, and active IL-1ß secretion was visualized by means of Western blotting. Real-time quantitative PCR was performed to assess cytokine gene expression. DNA was screened for variants of the MEFV, TNFRSF1A, MVK, and NLRP3 genes in a total of 57 patients with PFAPA syndrome. RESULTS: During a febrile attack, patients with PFAPA syndrome revealed significantly increased neutrophil counts, erythrocyte sedimentation rates, and C-reactive protein, serum amyloid A, myeloid-related protein 8/14, and S100A12 levels compared with those seen outside attacks. Stimulated PBMCs secreted significantly more IL-1ß during an attack (during a febrile episode, 575 ± 88 pg/mL; outside a febrile episode, 235 ± 56 pg/mL; P < .001), and this was in the mature active p17 form. IL-1ß secretion was inhibited by ZYVAD, a caspase inhibitor. Similar results were found for stimulated monocytes (during a febrile episode, 743 ± 183 pg/mL; outside a febrile episode, 227 ± 92 pg/mL; P < .05). Genotyping identified variants in 15 of 57 patients, with 12 NLRP3 variants, 1 TNFRSF1A variant, 4 MEFV variants, and 1 MVK variant. CONCLUSION: Our data strongly suggest that IL-1ß monocyte production is dysregulated in patients with PFAPA syndrome. Approximately 20% of them were found to have NLRP3 variants, suggesting that inflammasome-related genes might be involved in this autoinflammatory syndrome.


Subject(s)
Fever/metabolism , Interleukin-1beta/biosynthesis , Lymphadenitis/metabolism , Monocytes/metabolism , Pharyngitis/metabolism , Stomatitis, Aphthous/metabolism , Adolescent , Adult , Aged , Child , Female , Fever/genetics , Fever/immunology , Genetic Variation , Humans , Inflammation/immunology , Inflammation/metabolism , Inflammation Mediators/blood , Interleukin 1 Receptor Antagonist Protein/metabolism , Leukocyte Count , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Lipopolysaccharides/immunology , Lymphadenitis/genetics , Lymphadenitis/immunology , Male , Middle Aged , Monocytes/immunology , Neutrophils , Pharyngitis/genetics , Pharyngitis/immunology , Stomatitis, Aphthous/genetics , Stomatitis, Aphthous/immunology , Syndrome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...