Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 63(26): e202402060, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38618872

ABSTRACT

The late-stage functionalization of active pharmaceutical ingredients is a key challenge in medicinal chemistry. Furthermore, N-aryl triazoles and tetrazoles are important structural motifs with the potential to boost the activity of diverse drug molecules. Using easily accessible dibenzothiophenium salts for the ruthenium-catalyzed C-H arylation, these scaffolds were introduced into a variety of bioactive compounds. Our methodology uses cost-efficient ruthenium, KOAc as a mild base and gives access to a plethora of highly decorated triazole and tetrazole containing drug derivatives.

3.
Cell ; 187(2): 331-344.e17, 2024 01 18.
Article in English | MEDLINE | ID: mdl-38194964

ABSTRACT

Enhancers are distal DNA elements believed to loop and contact promoters to control gene expression. Recently, we found diffraction-sized transcriptional condensates at genes controlled by clusters of enhancers (super-enhancers). However, a direct function of endogenous condensates in controlling gene expression remains elusive. Here, we develop live-cell super-resolution and multi-color 3D-imaging approaches to investigate putative roles of endogenous condensates in the regulation of super-enhancer controlled gene Sox2. In contrast to enhancer distance, we find instead that the condensate's positional dynamics are a better predictor of gene expression. A basal gene bursting occurs when the condensate is far (>1 µm), but burst size and frequency are enhanced when the condensate moves in proximity (<1 µm). Perturbations of cohesin and local DNA elements do not prevent basal bursting but affect the condensate and its burst enhancement. We propose a three-way kissing model whereby the condensate interacts transiently with gene locus and regulatory DNA elements to control gene bursting.


Subject(s)
Gene Expression Regulation , SOXB1 Transcription Factors , Super Enhancers , Transcription, Genetic , DNA/genetics , Enhancer Elements, Genetic , SOXB1 Transcription Factors/genetics , Animals , Mice , Embryonic Stem Cells/metabolism , Microscopy/methods
4.
Angew Chem Int Ed Engl ; 61(20): e202201595, 2022 May 09.
Article in English | MEDLINE | ID: mdl-35172030

ABSTRACT

While electrochemical ortho-selective C-H activations are well established, distal C-H activations continue to be underdeveloped. In contrast, we herein describe the electrochemical meta-C-H functionalization. The remote C-H bromination was accomplished in an undivided cell by RuCl3 ⋅3 H2 O with aqueous HBr. The electrohalogenation proceeded under exogenous ligand- and electrolyte-free conditions. Notably, pyrazolylarenes were meta-selectively brominated at the benzenoid moiety, rather than on the electron-rich pyrazole ring for the first time. Mechanistic studies were suggestive of an initial ruthenacycle formation, and a subsequent ligand-to-ligand hydrogen transfer (LLHT) process to liberate the brominated product.

5.
Chemistry ; 28(1): e202103837, 2022 Jan 03.
Article in English | MEDLINE | ID: mdl-34714563

ABSTRACT

The use of electricity over traditional stoichiometric oxidants is a promising strategy for sustainable molecular assembly. Herein, we describe the rhoda-electrocatalyzed C-H activation/alkylation of several N-heteroarenes. This catalytic approach has been successfully applied to several arenes, including biologically relevant purines, diazepam, and amino acids. The versatile C-H alkylation featured water as a co-solvent and user-friendly trifluoroborates as alkylating agents. Finally, the rhoda-electrocatalysis with unsaturated organotrifluoroborates proceeded by paired electrolysis.


Subject(s)
Methylation , Alkylation , Catalysis
SELECTION OF CITATIONS
SEARCH DETAIL
...