Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Differentiation ; 138: 100782, 2024.
Article in English | MEDLINE | ID: mdl-38810379

ABSTRACT

The mandible is composed of several musculoskeletal tissues including bone, cartilage, and tendon that require precise patterning to ensure structural and functional integrity. Interestingly, most of these tissues are derived from one multipotent cell population called cranial neural crest cells (CNCCs). How CNCCs are properly instructed to differentiate into various tissue types remains nebulous. To better understand the mechanisms necessary for the patterning of mandibular musculoskeletal tissues we utilized the avian mutant talpid2 (ta2) which presents with several malformations of the facial skeleton including dysplastic tendons, mispatterned musculature, and bilateral ectopic cartilaginous processes extending off Meckel's cartilage. We found an ectopic epithelial BMP signaling domain in the ta2 mandibular prominence (MNP) that correlated with the subsequent expansion of SOX9+ cartilage precursors. These findings were validated with conditional murine models suggesting an evolutionarily conserved mechanism for CNCC-derived musculoskeletal patterning. Collectively, these data support a model in which cilia are required to define epithelial signal centers essential for proper musculoskeletal patterning of CNCC-derived mesenchyme.


Subject(s)
Mandible , Neural Crest , Animals , Neural Crest/cytology , Neural Crest/metabolism , Mice , Mandible/growth & development , Mandible/metabolism , Body Patterning/genetics , Cartilage/metabolism , Cartilage/growth & development , Cartilage/cytology , Cilia/metabolism , Cilia/genetics , Mesoderm/cytology , Mesoderm/metabolism , Mesoderm/growth & development , Gene Expression Regulation, Developmental , Avian Proteins/genetics , Avian Proteins/metabolism , Signal Transduction , Cell Differentiation , Chick Embryo , Chickens/genetics , SOX9 Transcription Factor/metabolism , SOX9 Transcription Factor/genetics
2.
Nat Commun ; 14(1): 1529, 2023 03 18.
Article in English | MEDLINE | ID: mdl-36934097

ABSTRACT

The spindle assembly checkpoint (SAC) safeguards the genome during cell division by generating an effector molecule known as the Mitotic Checkpoint Complex (MCC). The MCC comprises two subcomplexes: BUBR1:BUB3 and CDC20:MAD2, and the formation of CDC20:MAD2 is the rate-limiting step during MCC assembly. Recent studies show that the rate of CDC20:MAD2 formation is significantly accelerated by the cooperative binding of CDC20 to the SAC proteins MAD1 and BUB1. However, the molecular basis for this acceleration is not fully understood. Here, we demonstrate that the structural flexibility of MAD1 at a conserved hinge near the C-terminus is essential for catalytic MCC assembly. This MAD1 hinge enables the MAD1:MAD2 complex to assume a folded conformation in vivo. Importantly, truncating the hinge reduces the rate of MCC assembly in vitro and SAC signaling in vivo. Conversely, mutations that preserve hinge flexibility retain SAC signaling, indicating that the structural flexibility of the hinge, rather than a specific amino acid sequence, is important for SAC signaling. We summarize these observations as the 'knitting model' that explains how the folded conformation of MAD1:MAD2 promotes CDC20:MAD2 assembly.


Subject(s)
M Phase Cell Cycle Checkpoints , Protein Serine-Threonine Kinases , Humans , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Kinetochores/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Signal Transduction , Mad2 Proteins/genetics , Mad2 Proteins/metabolism , Spindle Apparatus/metabolism , Cdc20 Proteins/genetics , Cdc20 Proteins/metabolism , HeLa Cells
3.
Open Biol ; 12(1): 210274, 2022 01.
Article in English | MEDLINE | ID: mdl-35042402

ABSTRACT

Kinetochore (KTs) are macromolecular protein assemblies that attach sister chromatids to spindle microtubules (MTs) and mediate accurate chromosome segregation during mitosis. The outer KT consists of the KMN network, a protein super-complex comprising Knl1 (yeast Spc105), Mis12 (yeast Mtw1), and Ndc80 (yeast Ndc80), which harbours sites for MT binding. Within the KMN network, Spc105 acts as an interaction hub of components involved in spindle assembly checkpoint (SAC) signalling. It is known that Spc105 forms a complex with KT component Kre28. However, where Kre28 physically localizes in the budding yeast KT is not clear. The exact function of Kre28 at the KT is also unknown. Here, we investigate how Spc105 and Kre28 interact and how they are organized within bioriented yeast KTs using genetics and cell biological experiments. Our microscopy data show that Spc105 and Kre28 localize at the KT with a 1 : 1 stoichiometry. We also show that the Kre28-Spc105 interaction is important for Spc105 protein turn-over and essential for their mutual recruitment at the KTs. We created several truncation mutants of kre28 that affect Spc105 loading at the KTs. When over-expressed, these mutants sustain the cell viability, but SAC signalling and KT biorientation are impaired. Therefore, we conclude that Kre28 contributes to chromosome biorientation and high-fidelity segregation at least indirectly by regulating Spc105 localization at the KTs.


Subject(s)
Kinetochores , Saccharomyces cerevisiae Proteins , Chromosome Segregation , Kinetochores/metabolism , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Mitosis , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Spindle Apparatus/metabolism
4.
Curr Biol ; 32(1): 237-247.e6, 2022 01 10.
Article in English | MEDLINE | ID: mdl-34861183

ABSTRACT

Accurate chromosome segregation during cell division requires amphitelic chromosome attachment to the spindle apparatus. It is ensured by the combined activity of the spindle assembly checkpoint (SAC),1 a signaling mechanism that delays anaphase onset in response to unattached chromosomes, and an error correction mechanism that eliminates syntelic attachments.2 The SAC becomes active when Mps1 kinase sequentially phosphorylates the kinetochore protein Spc105/KNL1 and the signaling proteins that Spc105/KNL1 recruits to facilitate the production of the mitotic checkpoint complex (MCC).3-8 The error correction mechanism is regulated by the Aurora B kinase, but Aurora B also promotes SAC signaling via indirect mechanisms.9-12 Here we present evidence that Aurora B kinase activity directly promotes MCC production by working downstream of Mps1 in budding yeast and human cells. Using the ectopic SAC activation (eSAC) system, we find that the conditional dimerization of Aurora B in budding yeast and an Aurora B recruitment domain in HeLa cells with either Bub1 or Mad1, but not the phosphodomain of Spc105/KNL1, leads to ectopic MCC production and mitotic arrest.13-16 Importantly, Bub1 must recruit both Mad1 and Cdc20 for this ectopic signaling activity. These and other data show that Aurora B cooperates with Bub1 to promote MCC production, but only after Mps1 licenses Bub1 recruitment to the kinetochore. This direct involvement of Aurora B in SAC signaling may maintain SAC signaling even after Mps1 activity in the kinetochore is lowered.


Subject(s)
Kinetochores , M Phase Cell Cycle Checkpoints , Aurora Kinase B/genetics , Aurora Kinase B/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , HeLa Cells , Humans , Kinetochores/metabolism , Phosphorylation/physiology , Protein Serine-Threonine Kinases/genetics , Spindle Apparatus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...