Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Biol ; 223(Pt 24)2020 12 23.
Article in English | MEDLINE | ID: mdl-33268534

ABSTRACT

Social interactions pivot on an animal's experiences, internal states and feedback from others. This complexity drives the need for precise descriptions of behavior to dissect the fine detail of its genetic and neural circuit bases. In laboratory assays, male Drosophila melanogaster reliably exhibit aggression, and its extent is generally measured by scoring lunges, a feature of aggression in which one male quickly thrusts onto his opponent. Here, we introduce an explicit approach to identify both the onset and reversals in hierarchical status between opponents and observe that distinct aggressive acts reproducibly precede, concur or follow the establishment of dominance. We find that lunges are insufficient for establishing dominance. Rather, lunges appear to reflect the dominant state of a male and help in maintaining his social status. Lastly, we characterize the recurring and escalating structure of aggression that emerges through subsequent reversals in dominance. Collectively, this work provides a framework for studying the complexity of agonistic interactions in male flies, enabling its neurogenetic basis to be understood with precision.


Subject(s)
Aggression , Drosophila melanogaster , Animals , Behavior, Animal , Drosophila melanogaster/genetics , Hierarchy, Social , Male , Social Dominance
2.
Behav Genet ; 41(5): 754-67, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21617953

ABSTRACT

Cues from both an animal's internal physiological state and its local environment may influence its decision to disperse. However, identifying and quantifying the causative factors underlying the initiation of dispersal is difficult in uncontrolled natural settings. In this study, we automatically monitored the movement of fruit flies and examined the influence of food availability, sex, and reproductive status on their dispersal between laboratory environments. In general, flies with mating experience behave as if they are hungrier than virgin flies, leaving at a greater rate when food is unavailable and staying longer when it is available. Males dispersed at a higher rate and were more active than females when food was unavailable, but tended to stay longer in environments containing food than did females. We found no significant relationship between weight and activity, suggesting the behavioral differences between males and females are caused by an intrinsic factor relating to the sex of a fly and not simply its body size. Finally, we observed a significant difference between the dispersal of the natural isolate used throughout this study and the widely-used laboratory strain, Canton-S, and show that the difference cannot be explained by allelic differences in the foraging gene.


Subject(s)
Drosophila melanogaster/physiology , Sexual Behavior, Animal , Alleles , Animals , Behavior, Animal , Body Size , Crosses, Genetic , Environment , Feeding Behavior , Female , Male , Models, Genetic , Movement , Sex Factors , Species Specificity
3.
PLoS One ; 5(1): e8793, 2010 Jan 27.
Article in English | MEDLINE | ID: mdl-20111707

ABSTRACT

Methods available for quickly and objectively quantifying the behavioral phenotypes of the fruit fly, Drosophila melanogaster, lag behind in sophistication the tools developed for manipulating their genotypes. We have developed a simple, easy-to-replicate, general-purpose experimental chamber for studying the ground-based behaviors of fruit flies. The major innovative feature of our design is that it restricts flies to a shallow volume of space, forcing all behavioral interactions to take place within a monolayer of individuals. The design lessens the frequency that flies occlude or obscure each other, limits the variability in their appearance, and promotes a greater number of flies to move throughout the center of the chamber, thereby increasing the frequency of their interactions. The new chamber design improves the quality of data collected by digital video and was conceived and designed to complement automated machine vision methodologies for studying behavior. Novel and improved methodologies for better quantifying the complex behavioral phenotypes of Drosophila will facilitate studies related to human disease and fundamental questions of behavioral neuroscience.


Subject(s)
Behavior, Animal , Drosophila melanogaster/physiology , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...