Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
bioRxiv ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38826218

ABSTRACT

Analysis of lung alveolar type 2 (AT2) progenitor stem cells has highlighted fundamental mechanisms that direct their differentiation into alveolar type 1 cells (AT1s) in lung repair and disease. However, microRNA (miRNA) mediated post-transcriptional mechanisms which govern this nexus remain understudied. We show here that the let-7 miRNA family serves a homeostatic role in governance of AT2 quiescence, specifically by preventing the uncontrolled accumulation of AT2 transitional cells and by promoting AT1 differentiation to safeguard the lung from spontaneous alveolar destruction and fibrosis. Using mice and organoid models with genetic ablation of let-7a1/let-7f1/let-7d cluster (let-7afd) in AT2 cells, we demonstrate prevents AT1 differentiation and results in aberrant accumulation of AT2 transitional cells in progressive pulmonary fibrosis. Integration of enhanced AGO2 UV-crosslinking and immunoprecipitation sequencing (AGO2-eCLIP) with RNA-sequencing from AT2 cells uncovered the induction of direct targets of let-7 in an oncogene feed-forward regulatory network including BACH1/EZH2 which drives an aberrant fibrotic cascade. Additional analyses by CUT&RUN-sequencing revealed loss of let-7afd hampers AT1 differentiation by eliciting aberrant histone EZH2 methylation which prevents the exit of AT2 transitional cells into terminal AT1s. This study identifies let-7 as a key gatekeeper of post-transcriptional and epigenetic chromatin signals to prevent AT2-driven pulmonary fibrosis.

2.
HGG Adv ; 5(3): 100312, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38796699

ABSTRACT

Orofacial clefts (OFCs) are among the most common human congenital birth defects. Previous multiethnic studies have identified dozens of associated loci for both cleft lip with or without cleft palate (CL/P) and cleft palate alone (CP). Although several nearby genes have been highlighted, the "casual" variants are largely unknown. Here, we developed DeepFace, a convolutional neural network model, to assess the functional impact of variants by SNP activity difference (SAD) scores. The DeepFace model is trained with 204 epigenomic assays from crucial human embryonic craniofacial developmental stages of post-conception week (pcw) 4 to pcw 10. The Pearson correlation coefficient between the predicted and actual values for 12 epigenetic features achieved a median range of 0.50-0.83. Specifically, our model revealed that SNPs significantly associated with OFCs tended to exhibit higher SAD scores across various variant categories compared to less related groups, indicating a context-specific impact of OFC-related SNPs. Notably, we identified six SNPs with a significant linear relationship to SAD scores throughout developmental progression, suggesting that these SNPs could play a temporal regulatory role. Furthermore, our cell-type specificity analysis pinpointed the trophoblast cell as having the highest enrichment of risk signals associated with OFCs. Overall, DeepFace can harness distal regulatory signals from extensive epigenomic assays, offering new perspectives for prioritizing OFC variants using contextualized functional genomic features. We expect DeepFace to be instrumental in accessing and predicting the regulatory roles of variants associated with OFCs, and the model can be extended to study other complex diseases or traits.

3.
HGG Adv ; 5(3): 100313, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38807368

ABSTRACT

Orofacial clefts (OFCs) are common congenital birth defects with various etiologies, including genetic variants. Online Mendelian Inheritance in Man (OMIM) annotated several hundred genes involving OFCs. Furthermore, several hundreds of de novo variants (DNVs) have been identified from individuals with OFCs. Some DNVs are related to known OFC genes or pathways, but there are still many DNVs whose relevance to OFC development is unknown. To explore novel gene functions and their cellular expression profiles, we focused on DNVs in genes that were not listed in OMIM. We collected 960 DNVs in 853 genes from published studies and curated these genes, based on the DNVs' deleteriousness, into 230 and 23 genes related to cleft lip with or without cleft palate (CL/P) and cleft palate only (CPO), respectively. For comparison, we curated 178 CL/P and 277 CPO genes from OMIM. In CL/P, the pathways enriched in DNV and OMIM genes were significantly overlapped (p = 0.002). Single-cell RNA sequencing (scRNA-seq) analysis of mouse lip development revealed that both gene sets had abundant expression in the ectoderm (DNV genes: adjusted p = 0.032, OMIM genes: adjusted p < 0.0002), while only DNV genes were enriched in the endothelium (adjusted p = 0.032). Although we did not achieve significant findings using CPO gene sets, which was mainly due to the limited number of DNV genes, scRNA-seq analysis implicated various expression patterns among DNV and OMIM genes. Our results suggest that combinatory pathway and scRNA-seq data analyses are helpful for contextualizing genes in OFC development.

4.
Exp Hematol Oncol ; 13(1): 14, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38326887

ABSTRACT

Brexucabtagene autoleucel CAR-T therapy is highly efficacious in overcoming resistance to Bruton's tyrosine kinase inhibitors (BTKi) in mantle cell lymphoma. However, many patients relapse post CAR-T therapy with dismal outcomes. To dissect the underlying mechanisms of sequential resistance to BTKi and CAR-T therapy, we performed single-cell RNA sequencing analysis for 66 samples from 25 patients treated with BTKi and/or CAR-T therapy and conducted in-depth bioinformatics™ analysis. Our analysis revealed that MYC activity progressively increased with sequential resistance. HSP90AB1 (Heat shock protein 90 alpha family class B member 1), a MYC target, was identified as early driver of CAR-T resistance. CDK9 (Cyclin-dependent kinase 9), another MYC target, was significantly upregulated in Dual-R samples. Both HSP90AB1 and CDK9 expression were correlated with MYC activity levels. Pharmaceutical co-targeting of HSP90 and CDK9 synergistically diminished MYC activity, leading to potent anti-MCL activity. Collectively, our study revealed that HSP90-MYC-CDK9 network is the primary driving force of therapeutic resistance.

5.
Nat Commun ; 15(1): 821, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38280850

ABSTRACT

Perturbations in gene regulation during palatogenesis can lead to cleft palate, which is among the most common congenital birth defects. Here, we perform single-cell multiome sequencing and profile chromatin accessibility and gene expression simultaneously within the same cells (n = 36,154) isolated from mouse secondary palate across embryonic days (E) 12.5, E13.5, E14.0, and E14.5. We construct five trajectories representing continuous differentiation of cranial neural crest-derived multipotent cells into distinct lineages. By linking open chromatin signals to gene expression changes, we characterize the underlying lineage-determining transcription factors. In silico perturbation analysis identifies transcription factors SHOX2 and MEOX2 as important regulators of the development of the anterior and posterior palate, respectively. In conclusion, our study charts epigenetic and transcriptional dynamics in palatogenesis, serving as a valuable resource for further cleft palate research.


Subject(s)
Cleft Palate , Mice , Animals , Cleft Palate/genetics , Multiomics , Transcription Factors/genetics , Transcription Factors/metabolism , Chromatin/genetics , Gene Expression Regulation, Developmental
6.
iScience ; 26(9): 107578, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37664629

ABSTRACT

Microbial communities reside at the interface between humans and their environment. Whether the microbiome can be leveraged to gain information on human interaction with museum objects is unclear. To investigate this, we selected objects from the Museum für Naturkunde and the Pergamonmuseum in Berlin, Germany, varying in material and size. Using swabs, we collected 126 samples from natural and cultural heritage objects, which were analyzed through 16S rRNA sequencing. By comparing the microbial composition of touched and untouched objects, we identified a microbial signature associated with human skin microbes. Applying this signature to cultural heritage objects, we identified areas with varying degrees of exposure to human contact on the Ishtar gate and Sam'al gate lions. Furthermore, we differentiated objects touched by two different individuals. Our findings demonstrate that the microbiome of museum objects provides insights into the level of human contact, crucial for conservation, heritage science, and potentially provenance research.

7.
Genes (Basel) ; 14(6)2023 06 04.
Article in English | MEDLINE | ID: mdl-37372402

ABSTRACT

Genetic variation in the mitochondrial genome is linked to important biological functions and various human diseases. Recent progress in single-cell genomics has established single-cell RNA sequencing (scRNAseq) as a popular and powerful technique to profile transcriptomics at the cellular level. While most studies focus on deciphering gene expression, polymorphisms including mitochondrial variants can also be readily inferred from scRNAseq. However, limited attention has been paid to investigate the single-cell landscape of mitochondrial variants, despite the rapid accumulation of scRNAseq data in the community. In addition, a diploid context is assumed for most variant calling tools, which is not appropriate for mitochondrial heteroplasmies. Here, we introduce MitoTrace, an R package for the analysis of mitochondrial genetic variation in bulk and scRNAseq data. We applied MitoTrace to several publicly accessible data sets and demonstrated its ability to robustly recover genetic variants from scRNAseq data. We also validated the applicability of MitoTrace to scRNAseq data from diverse platforms. Overall, MitoTrace is a powerful and user-friendly tool to investigate mitochondrial variants from scRNAseq data.


Subject(s)
Genomics , Mitochondria , Humans , Mitochondria/genetics , Gene Expression Profiling/methods , Polymorphism, Genetic , Sequence Analysis, RNA/methods
8.
Genomics Proteomics Bioinformatics ; 21(2): 370-384, 2023 04.
Article in English | MEDLINE | ID: mdl-35470070

ABSTRACT

Single-cell RNA sequencing (scRNA-seq) is revolutionizing the study of complex and dynamic cellular mechanisms. However, cell type annotation remains a main challenge as it largely relies on a priori knowledge and manual curation, which is cumbersome and subjective. The increasing number of scRNA-seq datasets, as well as numerous published genetic studies, has motivated us to build a comprehensive human cell type reference atlas.Here, we present decoding Cell type Specificity (deCS), an automatic cell type annotation method augmented by a comprehensive collection of human cell type expression profiles and marker genes. We used deCS to annotate scRNA-seq data from various tissue types and systematically evaluated the annotation accuracy under different conditions, including reference panels, sequencing depth, and feature selection strategies. Our results demonstrate that expanding the references is critical for improving annotation accuracy. Compared to many existing state-of-the-art annotation tools, deCS significantly reduced computation time and increased accuracy. deCS can be integrated into the standard scRNA-seq analytical pipeline to enhance cell type annotation. Finally, we demonstrated the broad utility of deCS to identify trait-cell type associations in 51 human complex traits, providing deep insights into the cellular mechanisms underlying disease pathogenesis. All documents for deCS, including source code, user manual, demo data, and tutorials, are freely available at https://github.com/bsml320/deCS.


Subject(s)
Gene Expression Profiling , Single-Cell Analysis , Humans , Gene Expression Profiling/methods , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Software
9.
Cell Rep ; 41(5): 111576, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36323253

ABSTRACT

The nuclear pore complex (NPC) comprises more than 30 nucleoporins (NUPs) and is a hallmark of eukaryotes. NUPs have been suggested to be important in regulating gene transcription and 3D genome organization. However, evidence in support of their direct roles remains limited. Here, by Cut&Run, we find that core NUPs display broad but also cell-type-specific association with active promoters and enhancers in human cells. Auxin-mediated rapid depletion of two NUPs demonstrates that NUP93, but not NUP35, directly and specifically controls gene transcription. NUP93 directly activates genes with high levels of RNA polymerase II loading and transcriptional elongation by facilitating full BRD4 recruitment to their active enhancers. dCas9-based tethering confirms a direct and causal role of NUP93 in gene transcriptional activation. Unexpectedly, in situ Hi-C and H3K27ac or H3K4me1 HiChIP results upon acute NUP93 depletion show negligible changesS2211-1247(22)01437-1 of 3D genome organization ranging from A/B compartments and topologically associating domains (TADs) to enhancer-promoter contacts.


Subject(s)
Nuclear Pore Complex Proteins , Nuclear Proteins , Humans , Nuclear Pore Complex Proteins/genetics , Nuclear Proteins/genetics , Transcription Factors/genetics , Nuclear Pore , Genome , Chromatin , Cell Cycle Proteins/genetics
10.
Patterns (N Y) ; 2(8): 100311, 2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34430929

ABSTRACT

Droplet-based single-cell RNA sequencing (scRNA-seq) has significantly increased the number of cells profiled per experiment and revolutionized the study of individual transcriptomes. However, to maximize the biological signal, robust computational methods are needed to distinguish cell-free from cell-containing droplets. Here, we introduce a novel cell-calling algorithm called EmptyNN, which trains a neural network based on positive-unlabeled learning for improved filtering of barcodes. For benchmarking purposes, we leveraged cell hashing and genetic variation to provide ground truth. EmptyNN accurately removed cell-free droplets while recovering lost cell clusters, and achieved an area under the receiver operating characteristics of 94.73% and 96.30%, respectively. Comparisons to current state-of-the-art cell-calling algorithms demonstrated the superior performance of EmptyNN. EmptyNN was further applied to a single-nucleus RNA sequencing (snRNA-seq) dataset and showed good performance. Therefore, EmptyNN represents a powerful tool to enhance both scRNA-seq and snRNA-seq quality control analyses.

11.
Genes (Basel) ; 12(5)2021 04 24.
Article in English | MEDLINE | ID: mdl-33923155

ABSTRACT

Single-cell RNA sequencing of the bronchoalveolar lavage fluid (BALF) samples from COVID-19 patients has enabled us to examine gene expression changes of human tissue in response to the SARS-CoV-2 virus infection. However, the underlying mechanisms of COVID-19 pathogenesis at single-cell resolution, its transcriptional drivers, and dynamics require further investigation. In this study, we applied machine learning algorithms to infer the trajectories of cellular changes and identify their transcriptional programs. Our study generated cellular trajectories that show the COVID-19 pathogenesis of healthy-to-moderate and healthy-to-severe on macrophages and T cells, and we observed more diverse trajectories in macrophages compared to T cells. Furthermore, our deep-learning algorithm DrivAER identified several pathways (e.g., xenobiotic pathway and complement pathway) and transcription factors (e.g., MITF and GATA3) that could be potential drivers of the transcriptomic changes for COVID-19 pathogenesis and the markers of the COVID-19 severity. Moreover, macrophages-related functions corresponded more to the disease severity compared to T cells-related functions. Our findings more proficiently dissected the transcriptomic changes leading to the severity of a COVID-19 infection.


Subject(s)
Bronchoalveolar Lavage Fluid/virology , COVID-19/etiology , COVID-19/pathology , Macrophages , T-Lymphocytes , Algorithms , COVID-19/genetics , Computational Biology/methods , Gene Expression Profiling , Humans , Machine Learning , Macrophages/physiology , Macrophages/virology , Sequence Analysis, RNA/methods , Single-Cell Analysis , T-Lymphocytes/physiology , T-Lymphocytes/virology
12.
EMBO Mol Med ; 13(4): e12871, 2021 04 09.
Article in English | MEDLINE | ID: mdl-33650774

ABSTRACT

The correspondence of cell state changes in diseased organs to peripheral protein signatures is currently unknown. Here, we generated and integrated single-cell transcriptomic and proteomic data from multiple large pulmonary fibrosis patient cohorts. Integration of 233,638 single-cell transcriptomes (n = 61) across three independent cohorts enabled us to derive shifts in cell type proportions and a robust core set of genes altered in lung fibrosis for 45 cell types. Mass spectrometry analysis of lung lavage fluid (n = 124) and plasma (n = 141) proteomes identified distinct protein signatures correlated with diagnosis, lung function, and injury status. A novel SSTR2+ pericyte state correlated with disease severity and was reflected in lavage fluid by increased levels of the complement regulatory factor CFHR1. We further discovered CRTAC1 as a biomarker of alveolar type-2 epithelial cell health status in lavage fluid and plasma. Using cross-modal analysis and machine learning, we identified the cellular source of biomarkers and demonstrated that information transfer between modalities correctly predicts disease status, suggesting feasibility of clinical cell state monitoring through longitudinal sampling of body fluid proteomes.


Subject(s)
Proteomics , Pulmonary Fibrosis , Biomarkers , Bronchoalveolar Lavage Fluid , Calcium-Binding Proteins , Humans , Proteome/metabolism
13.
Cell ; 184(2): 384-403.e21, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33450205

ABSTRACT

Many oncogenic insults deregulate RNA splicing, often leading to hypersensitivity of tumors to spliceosome-targeted therapies (STTs). However, the mechanisms by which STTs selectively kill cancers remain largely unknown. Herein, we discover that mis-spliced RNA itself is a molecular trigger for tumor killing through viral mimicry. In MYC-driven triple-negative breast cancer, STTs cause widespread cytoplasmic accumulation of mis-spliced mRNAs, many of which form double-stranded structures. Double-stranded RNA (dsRNA)-binding proteins recognize these endogenous dsRNAs, triggering antiviral signaling and extrinsic apoptosis. In immune-competent models of breast cancer, STTs cause tumor cell-intrinsic antiviral signaling, downstream adaptive immune signaling, and tumor cell death. Furthermore, RNA mis-splicing in human breast cancers correlates with innate and adaptive immune signatures, especially in MYC-amplified tumors that are typically immune cold. These findings indicate that dsRNA-sensing pathways respond to global aberrations of RNA splicing in cancer and provoke the hypothesis that STTs may provide unexplored strategies to activate anti-tumor immune pathways.


Subject(s)
Antiviral Agents/pharmacology , Immunity/drug effects , Spliceosomes/metabolism , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/pathology , Adaptive Immunity/drug effects , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cytoplasm/drug effects , Cytoplasm/metabolism , Female , Gene Amplification/drug effects , Humans , Introns/genetics , Mice , Molecular Targeted Therapy , Proto-Oncogene Proteins c-myc/metabolism , RNA Splicing/drug effects , RNA Splicing/genetics , RNA, Double-Stranded/metabolism , Signal Transduction/drug effects , Spliceosomes/drug effects , Triple Negative Breast Neoplasms/genetics
14.
Genome Res ; 31(1): 146-158, 2021 01.
Article in English | MEDLINE | ID: mdl-33272935

ABSTRACT

As the most complex organ of the human body, the brain is composed of diverse regions, each consisting of distinct cell types and their respective cellular interactions. Human brain development involves a finely tuned cascade of interactive events. These include spatiotemporal gene expression changes and dynamic alterations in cell-type composition. However, our understanding of this process is still largely incomplete owing to the difficulty of brain spatiotemporal transcriptome collection. In this study, we developed a tensor-based approach to impute gene expression on a transcriptome-wide level. After rigorous computational benchmarking, we applied our approach to infer missing data points in the widely used BrainSpan resource and completed the entire grid of spatiotemporal transcriptomics. Next, we conducted deconvolutional analyses to comprehensively characterize major cell-type dynamics across the entire BrainSpan resource to estimate the cellular temporal changes and distinct neocortical areas across development. Moreover, integration of these results with GWAS summary statistics for 13 brain-associated traits revealed multiple novel trait-cell-type associations and trait-spatiotemporal relationships. In summary, our imputed BrainSpan transcriptomic data provide a valuable resource for the research community and our findings help further studies of the transcriptional and cellular dynamics of the human brain and related diseases.


Subject(s)
Brain Diseases , Brain , Gene Expression Profiling , Humans , Phenotype , Transcriptome
15.
Cell Rep ; 33(13): 108552, 2020 12 29.
Article in English | MEDLINE | ID: mdl-33378673

ABSTRACT

Extracellular RNAs present in biofluids have emerged as potential biomarkers for disease. Where most studies focus on blood-derived fluids, other biofluids may be more informative. We present an atlas of messenger, circular, and small RNA transcriptomes of a comprehensive collection of 20 human biofluids. By means of synthetic spike-in controls, we compare RNA content across biofluids, revealing a 10,000-fold difference in concentration. The circular RNA fraction is increased in most biofluids compared to tissues. Each biofluid transcriptome is enriched for RNA molecules derived from specific tissues and cell types. Our atlas enables an informed selection of the most relevant biofluid to monitor particular diseases. To verify the biomarker potential in these biofluids, four validation cohorts representing a broad spectrum of diseases were profiled, revealing numerous differential RNAs between case and control subjects. Spike-normalized data are publicly available in the R2 web portal for further exploration.


Subject(s)
Biomarkers , Body Fluids/metabolism , RNA/metabolism , Transcriptome , Cohort Studies , Gene Expression Profiling/methods , Humans , RNA/genetics , Sequence Analysis, RNA/methods
16.
Gigascience ; 9(12)2020 12 10.
Article in English | MEDLINE | ID: mdl-33301553

ABSTRACT

BACKGROUND: Single-cell RNA sequencing (scRNA-seq) unfolds complex transcriptomic datasets into detailed cellular maps. Despite recent success, there is a pressing need for specialized methods tailored towards the functional interpretation of these cellular maps. FINDINGS: Here, we present DrivAER, a machine learning approach for the identification of driving transcriptional programs using autoencoder-based relevance scores. DrivAER scores annotated gene sets on the basis of their relevance to user-specified outcomes such as pseudotemporal ordering or disease status. DrivAER iteratively evaluates the information content of each gene set with respect to the outcome variable using autoencoders. We benchmark our method using extensive simulation analysis as well as comparison to existing methods for functional interpretation of scRNA-seq data. Furthermore, we demonstrate that DrivAER extracts key pathways and transcription factors that regulate complex biological processes from scRNA-seq data. CONCLUSIONS: By quantifying the relevance of annotated gene sets with respect to specified outcome variables, DrivAER greatly enhances our ability to understand the underlying molecular mechanisms.


Subject(s)
RNA , Single-Cell Analysis , Gene Expression Profiling , Machine Learning , Sequence Analysis, RNA , Transcriptome
17.
Nat Commun ; 11(1): 3559, 2020 07 16.
Article in English | MEDLINE | ID: mdl-32678092

ABSTRACT

The cell type specific sequences of transcriptional programs during lung regeneration have remained elusive. Using time-series single cell RNA-seq of the bleomycin lung injury model, we resolved transcriptional dynamics for 28 cell types. Trajectory modeling together with lineage tracing revealed that airway and alveolar stem cells converge on a unique Krt8 + transitional stem cell state during alveolar regeneration. These cells have squamous morphology, feature p53 and NFkB activation and display transcriptional features of cellular senescence. The Krt8+ state appears in several independent models of lung injury and persists in human lung fibrosis, creating a distinct cell-cell communication network with mesenchyme and macrophages during repair. We generated a model of gene regulatory programs leading to Krt8+ transitional cells and their terminal differentiation to alveolar type-1 cells. We propose that in lung fibrosis, perturbed molecular checkpoints on the way to terminal differentiation can cause aberrant persistence of regenerative intermediate stem cell states.


Subject(s)
Alveolar Epithelial Cells/metabolism , Keratin-8/metabolism , Pulmonary Alveoli/physiology , Pulmonary Fibrosis/pathology , Regeneration , Stem Cells/metabolism , Alveolar Epithelial Cells/cytology , Animals , Cell Communication , Disease Models, Animal , Female , Gene Expression Profiling , Humans , Keratin-8/genetics , Lung Injury/chemically induced , Lung Injury/metabolism , Lung Injury/pathology , Mice , Mice, Inbred C57BL , Pulmonary Alveoli/cytology , Pulmonary Fibrosis/metabolism , Single-Cell Analysis , Stem Cells/cytology
18.
Circ Res ; 126(4): 501-516, 2020 02 14.
Article in English | MEDLINE | ID: mdl-31852401

ABSTRACT

RATIONALE: Longitudinal studies are required to distinguish within versus between-individual variation and repeatability of gene expression. They are uniquely positioned to decipher genetic signal from environmental noise, with potential application to gene variant and expression studies. However, longitudinal analyses of gene expression in healthy individuals-especially with regards to alternative splicing-are lacking for most primary cell types, including platelets. OBJECTIVE: To assess repeatability of gene expression and splicing in platelets and use repeatability to identify novel platelet expression quantitative trait loci (QTLs) and splice QTLs. METHODS AND RESULTS: We sequenced the transcriptome of platelets isolated repeatedly up to 4 years from healthy individuals. We examined within and between individual variation and repeatability of platelet RNA expression and exon skipping, a readily measured alternative splicing event. We find that platelet gene expression is generally stable between and within-individuals over time-with the exception of a subset of genes enriched for the inflammation gene ontology. We show an enrichment among repeatable genes for associations with heritable traits, including known and novel platelet expression QTLs. Several exon skipping events were also highly repeatable, suggesting heritable patterns of splicing in platelets. One of the most repeatable was exon 14 skipping of SELP. Accordingly, we identify rs6128 as a platelet splice QTL and define an rs6128-dependent association between SELP exon 14 skipping and race. In vitro experiments demonstrate that this single nucleotide variant directly affects exon 14 skipping and changes the ratio of transmembrane versus soluble P-selectin protein production. CONCLUSIONS: We conclude that the platelet transcriptome is generally stable over 4 years. We demonstrate the use of repeatability of gene expression and splicing to identify novel platelet expression QTLs and splice QTLs. rs6128 is a platelet splice QTL that alters SELP exon 14 skipping and soluble versus transmembrane P-selectin protein production.


Subject(s)
Alternative Splicing , Blood Platelets/metabolism , P-Selectin/genetics , Quantitative Trait Loci/genetics , RNA-Seq/methods , Transcriptome/genetics , Exons/genetics , Gene Ontology , Humans , Polymorphism, Single Nucleotide
19.
Mol Cancer Res ; 17(11): 2318-2330, 2019 11.
Article in English | MEDLINE | ID: mdl-31420371

ABSTRACT

Despite effective strategies, resistance in HER2+ breast cancer remains a challenge. While the mevalonate pathway (MVA) is suggested to promote cell growth and survival, including in HER2+ models, its potential role in resistance to HER2-targeted therapy is unknown. Parental HER2+ breast cancer cells and their lapatinib-resistant and lapatinib + trastuzumab-resistant derivatives were used for this study. MVA activity was found to be increased in lapatinib-resistant and lapatinib + trastuzumab-resistant cells. Specific blockade of this pathway with lipophilic but not hydrophilic statins and with the N-bisphosphonate zoledronic acid led to apoptosis and substantial growth inhibition of R cells. Inhibition was rescued by mevalonate or the intermediate metabolites farnesyl pyrophosphate or geranylgeranyl pyrophosphate, but not cholesterol. Activated Yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) and mTORC1 signaling, and their downstream target gene product Survivin, were inhibited by MVA blockade, especially in the lapatinib-resistant/lapatinib + trastuzumab-resistant models. Overexpression of constitutively active YAP rescued Survivin and phosphorylated-S6 levels, despite blockade of the MVA. These results suggest that the MVA provides alternative signaling leading to cell survival and resistance by activating YAP/TAZ-mTORC1-Survivin signaling when HER2 is blocked, suggesting novel therapeutic targets. MVA inhibitors including lipophilic statins and N-bisphosphonates may circumvent resistance to anti-HER2 therapy warranting further clinical investigation. IMPLICATIONS: The MVA was found to constitute an escape mechanism of survival and growth in HER2+ breast cancer models resistant to anti-HER2 therapies. MVA inhibitors such as simvastatin and zoledronic acid are potential therapeutic agents to resensitize the tumors that depend on the MVA to progress on anti-HER2 therapies.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Drug Resistance, Neoplasm , Mevalonic Acid/metabolism , Receptor, ErbB-2/antagonists & inhibitors , Signal Transduction , Apoptosis/drug effects , Breast Neoplasms/metabolism , Cell Line, Tumor , Female , Humans , Lapatinib/pharmacology , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Phosphorylation , Trastuzumab/pharmacology
20.
Nat Med ; 25(7): 1153-1163, 2019 07.
Article in English | MEDLINE | ID: mdl-31209336

ABSTRACT

Human lungs enable efficient gas exchange and form an interface with the environment, which depends on mucosal immunity for protection against infectious agents. Tightly controlled interactions between structural and immune cells are required to maintain lung homeostasis. Here, we use single-cell transcriptomics to chart the cellular landscape of upper and lower airways and lung parenchyma in healthy lungs, and lower airways in asthmatic lungs. We report location-dependent airway epithelial cell states and a novel subset of tissue-resident memory T cells. In the lower airways of patients with asthma, mucous cell hyperplasia is shown to stem from a novel mucous ciliated cell state, as well as goblet cell hyperplasia. We report the presence of pathogenic effector type 2 helper T cells (TH2) in asthmatic lungs and find evidence for type 2 cytokines in maintaining the altered epithelial cell states. Unbiased analysis of cell-cell interactions identifies a shift from airway structural cell communication in healthy lungs to a TH2-dominated interactome in asthmatic lungs.


Subject(s)
Asthma/pathology , Lung/cytology , Adult , Aged , CD4-Positive T-Lymphocytes/physiology , Cell Communication , Epithelial Cells/immunology , Epithelial Cells/physiology , Female , Genome-Wide Association Study , Goblet Cells/metabolism , Humans , Lung/immunology , Lung/pathology , Male , Metaplasia , Middle Aged , Th2 Cells/physiology , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...