Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
ChemSusChem ; 13(12): 3101-3109, 2020 Jun 19.
Article in English | MEDLINE | ID: mdl-32196140

ABSTRACT

Ionic liquids (ILs) are among the most studied and promising materials for selective CO2 capture and transformation. The high CO2 sorption capacity associated with the possibility to activate this rather stable molecule through stabilization of ionic/radical species or covalent interactions either with the cation or anion has opened new avenues for CO2 functionalization. However, recent reports have demonstrated that another simpler and plausible pathway is also involved in the sorption/activation of CO2 by ILs associated with basic anions. Bare ILs or IL solutions contain almost invariable significant amounts of water and through interaction with CO2 generate carbonates/bicarbonates rather than carbamic acids or amidates. In these cases, the IL acts as a base and not a nucleophile and yields buffer-like solutions that can be used to shift the equilibrium toward acid products in different CO2 reutilization reactions. In this Minireview, the emergence of IL buffer-like solutions as a new reactivity paradigm in CO2 capture and activation is described and analyzed critically, mainly through the evaluation of NMR data.

2.
ChemSusChem ; 12(18): 4170-4175, 2019 Sep 20.
Article in English | MEDLINE | ID: mdl-31271516

ABSTRACT

Electrocatalysis of CO2 reduction in aqueous electrolytes containing the ionic liquid (IL) 1-n-butyl-2,3-dimethylimidazolium acetate ([BMMIm][OAc]) and DMSO proceeded at low overpotentials (-0.9 V vs. Ag/AgCl) at commercially-available Au electrodes, with high selectivity for CO production (58 % faradaic efficiency at -1.6 V vs. Ag/AgCl). 0.43 mol CO2 per mol IL could be absorbed into the electrolyte at atmospheric pressure, forming bicarbonate and providing a constant supply of dissolved CO2 to the surface of the electrode. Electrocatalysis of CO2 reduction in the electrolyte was facilitated by stabilization of CO2 radical anions by the imidazolium cations of the IL and buffer-like effects with bicarbonate.

3.
Angew Chem Int Ed Engl ; 58(2): 382-385, 2019 Jan 08.
Article in English | MEDLINE | ID: mdl-30537375

ABSTRACT

The preorganization and cooperation mechanism of imide-based ionic liquids reported in a recent Communication was evocated to rationalize the extremely high gravimetric CO2 capture displayed by these fluids. An analysis of the reported spectroscopic evidences together with additional experiments led to the proposition of an alternative, simpler, and feasible mechanism involving the formation of bicarbonate.

4.
Chemphyschem ; 19(21): 2879-2884, 2018 11 05.
Article in English | MEDLINE | ID: mdl-30092119

ABSTRACT

A series of functionalized N-alkylimidazolium based ionic liquids (ImILs) were designed, through anion (carboxylates and halogenated) and cation (N-alkyl side chains) structural modifications, and studied as potential sorbents for CO2 . The sorption capacities of as prepared bare ImILs could be enhanced from 0.20 to 0.60 molar fraction by variation of cation-anion-CO2 and IL-CO2 -water interaction. By combining NMR spectroscopy with molecular dynamics simulations, a good description of interactions between ImIL and CO2 can be obtained. Three types of CO2 sorption modes have been evidenced depending on the structure of the ImIL ion pair: Physisorption, formation of bicarbonate, and covalent interaction through the nucleophilic addition of CO2 to the cation or anion. The highest CO2 sorption capacity was observed with the ImIL containing the 1-n-butyl-3-methylimidazolium cation associated with the carboxylate anions (succinate and malonate). This study provides helpful clues for better understanding the structure-activity relationship of this class of materials and the ion pair influence on CO2 capture.

5.
ChemSusChem ; 10(24): 4927-4933, 2017 12 22.
Article in English | MEDLINE | ID: mdl-28742268

ABSTRACT

Confined water in aqueous solutions of imidazolium-based ionic liquids (ILs) associated with acetate and imidazolate anions react reversibly with CO2 to yield bicarbonate. Three types of CO2 sorption in these "IL aqueous solutions" were observed: physical, CO2 -imidazolium adduct generation, and bicarbonate formation (up to 1.9 molbicarbonate mol-1 of IL), resulting in a 10:1 (molar ratio) total absorption of CO2 relative to imidazolate anions in the presence of water 1:1000 (IL/water). These sorption values are higher than the classical alkanol amines or even alkaline aqueous solutions under similar experimental conditions.


Subject(s)
Carbon Dioxide/chemistry , Ionic Liquids/chemistry , Water/chemistry , Solutions/chemistry
6.
Angew Chem Int Ed Engl ; 53(47): 12817-21, 2014 Nov 17.
Article in English | MEDLINE | ID: mdl-25257391

ABSTRACT

1-n-Butyl-2,3-dimethylimidazolium (BMMI) ionic liquids (ILs) associated with different anions undergo H/D exchange preferentially at 2-Me group of the imidazolium in deuterated solvents. This process is mainly related to the existence of ion pairs rather than the anion basicity. The H/D exchange occurs in solvents (CDCl3 and MeCN for instance) in which intimate contact ion pairs are present and the anion possesses a labile H in its structure, such as hydrogen carbonate and prolinate. In D2 O, separated ion pairs are formed and the H/D exchange does not occur. A plausible catalytic cycle is that the IL behaves as a neutral base in the course of all H/D exchange processes. NMR experiments, density functional calculations, and molecular dynamics simulations corroborate these hypotheses.

7.
J Hazard Mater ; 164(2-3): 1213-22, 2009 May 30.
Article in English | MEDLINE | ID: mdl-18930589

ABSTRACT

The Brazilian pine-fruit shell (Araucaria angustifolia) is a food residue, which was used in natural and carbonized forms, as low-cost adsorbents for the removal of methylene blue (MB) from aqueous solutions. Chemical treatment of Brazilian pine-fruit shell (PW), with sulfuric acid produced a non-activated carbonaceous material (C-PW). Both PW and C-PW were tested as low-cost adsorbents for the removal of MB from aqueous effluents. It was observed that C-PW leaded to a remarkable increase in the specific surface area, average porous volume, and average porous diameter of the adsorbent when compared to PW. The effects of shaking time, adsorbent dosage and pH on adsorption capacity were studied. In basic pH region (pH 8.5) the adsorption of MB was favorable. The contact time required to obtain the equilibrium was 6 and 4h at 25 degrees C, using PW and C-PW as adsorbents, respectively. Based on error function values (F(error)) the kinetic data were better fitted to fractionary-order kinetic model when compared to pseudo-first order, pseudo-second order, and chemisorption kinetic models. The equilibrium data were fitted to Langmuir, Freundlich, Sips and Redlich-Peterson isotherm models. For MB dye the equilibrium data were better fitted to the Sips isotherm model using PW and C-PW as adsorbents.


Subject(s)
Methylene Blue/isolation & purification , Pinus , Water Pollutants, Chemical/isolation & purification , Adsorption , Brazil , Hydrogen-Ion Concentration , Kinetics , Nuts , Water Purification/methods
8.
J Hazard Mater ; 155(3): 536-50, 2008 Jul 15.
Article in English | MEDLINE | ID: mdl-18178307

ABSTRACT

The Brazilian pine-fruit shell (Araucaria angustifolia) is a food residue, that was used as biosorbent for the removal of non-hydrolyzed reactive red 194 (NRR) and hydrolyzed reactive red 194 (HRR) forms from aqueous solutions. Chemical treatment of Brazilian pine-fruit shell (PW), with chromium (Cr-PW), with acid (A-PW), and with acid followed by chromium (Cr-A-PW) were also tested as alternative biosorbents for the removal of NRR and HRR from aqueous effluents. It was observed that the treatment of the Brazilian pine-fruit shell with chromium (Cr-PW and Cr-A-PW) leaded to a remarkable increase in the specific surface area and average porous volume of these biosorbents when compared to unmodified Brazilian pine-fruit shell (PW). The effects of shaking time, biosorbent dosage and pH on biosorption capacity were studied. In acidic pH region (pH 2.0) the biosorption of NRR and HRR were favorable. The contact time required to obtain the equilibrium was 24h at 25 degrees C. The equilibrium data were fitted to Langmuir, Freundlich, Sips and Redlich-Peterson isotherm models. For NRR reactive dye the equilibrium data were best fitted to the Sips isotherm model using PW and A-PW as biosorbents, and Redlich-Peterson isotherm model using Cr-PW and Cr-A-PW as biosorbents. For HRR reactive dye the equilibrium data were best fitted to the Sips isotherm model using PW, A-PW and Cr-A-PW and the Redlich-Peterson isotherm model for Cr-PW as biosorbent.


Subject(s)
Coloring Agents/isolation & purification , Tracheophyta/chemistry , Adsorption , Chromium/chemistry , Hydrogen-Ion Concentration , Kinetics , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared
9.
J Hazard Mater ; 140(1-2): 211-20, 2007 Feb 09.
Article in English | MEDLINE | ID: mdl-16876938

ABSTRACT

Wastes of Araucaria angustifolia (named pinhão) natural (PW) and also loaded with Congo red (CRP) were tested as low-cost adsorbents for Cu(II) removal from aqueous solutions. In order to reduce the total number of experiments to achieve the best conditions of the batch adsorption procedure, three sets of statistical designs of experiments were carried-out for each adsorbent. Initially, a full 2(4) factorial design for each adsorbent with two central points (18 experiments) were performed, to optimize the following factors: mass of adsorbent (m), pH, time of contact (t) and initial metallic ion concentration (Co). These results indicated that almost all the main factors and its interactions were significant. It was verified for both adsorbents, that a mass of 30.0mg leaded to higher Cu(II) uptake and that the best pH for Cu(II) adsorption was 5.6. In order to continue the batch adsorption optimization of the systems, a central composite surface analysis design with two factors (Co, t) containing 13 experiments, divided in to four cube points, four axial points and five centre points was carried-out for each adsorbent. By performing these two sets of statistical design of experiments, the best conditions for Cu(II) uptake using pinhão wastes (PW) and pinhão wastes loaded with Congo red (CRP) using batch adsorption system, where: m=30.0mg of adsorbent; pH 5.6; t=2.5h. After optimizing the batch adsorption system by statistical design of experiments, isotherms for Cu(II) uptake using PW and CRP were performed. These isotherms fitted to the linear Langmuir and Freundlich models.


Subject(s)
Copper/isolation & purification , Industrial Waste/prevention & control , Models, Chemical , Adsorption , Congo Red , Hydrogen-Ion Concentration , Research Design
10.
J Colloid Interface Sci ; 302(2): 396-407, 2006 Oct 15.
Article in English | MEDLINE | ID: mdl-16920134

ABSTRACT

7-Amine-4-azaheptylsilica (AAH Si) and 10-amine-4-azadecylsilica (AAD Si) were prepared and used for removal of Cu(II), Pb(II), and Fe(III) from aqueous solutions. Full 2(3) factorial designs with two pseudo-central points were carried out in order to achieve the best conditions of the batch adsorption procedure for metallic ion uptake by the adsorbents. To continue the optimizations, central composite surface design was also employed. These two independent statistical designs of experiments lead to the following conditions: m=30.0 mg of adsorbent; pH 6.0 for Cu(II) and Pb(II), pH 4.0 for Fe(III); t of contact 180 min to guarantee equilibration at higher adsorbate concentration. After optimization of the conditions, isotherms of the metallic ions adsorbed on the AAH Si and AAD Si adsorbents were obtained, which were fitted to nonlinear Langmuir and Freundlich isotherm models.


Subject(s)
Amines/chemistry , Copper/chemistry , Iron/chemistry , Lead/chemistry , Organosilicon Compounds/chemistry , Research Design/statistics & numerical data , Adsorption , Amines/chemical synthesis , Organosilicon Compounds/chemical synthesis , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...