Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 11(18)2022 09 09.
Article in English | MEDLINE | ID: mdl-36139397

ABSTRACT

On arrested neutrophils a focal adhesive cluster of ~200 high affinity (HA) ß2-integrin bonds under tension is sufficient to trigger Ca2+ flux that signals an increase in activation in direct proportion to increments in shear stress. We reasoned that a threshold tension acting on individual ß2-integrin bonds provides a mechanical means of transducing the magnitude of fluid drag force into signals that enhance the efficiency of neutrophil recruitment and effector function. Tension gauge tethers (TGT) are a duplex of DNA nucleotides that rupture at a precise shear force, which increases with the extent of nucleotide overlap, ranging from a tolerance of 54pN to 12pN. TGT annealed to a substrate captures neutrophils via allosteric antibodies that stabilize LFA-1 in a high- or low-affinity conformation. Neutrophils sheared on TGT substrates were recorded in real time to form HA ß2-integrin bonds and flux cytosolic Ca2+, which elicited shape change and downstream production of reactive oxygen species. A threshold force of 33pN triggered consolidation of HA ß2-integrin bonds and triggered membrane influx of Ca2+, whereas an optimum tension of 54pN efficiently transduced activation at a level equivalent to chemotactic stimulation on ICAM-1. We conclude that neutrophils sense the level of fluid drag transduced through individual ß2-integrin bonds, providing an intrinsic means to modulate inflammatory response in the microcirculation.


Subject(s)
CD18 Antigens , Lymphocyte Function-Associated Antigen-1 , Adhesives , Calcium , Intercellular Adhesion Molecule-1 , Neutrophils , Nucleotides , Reactive Oxygen Species
SELECTION OF CITATIONS
SEARCH DETAIL
...