Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 14(11): 2860-2865, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36937584

ABSTRACT

Whether in organic synthesis or solar energy conversion, light can be a powerful reagent in chemical reactions and introduce new opportunities for synthetic control including duration, intensity, interval, and energy of irradiation. Here, we report the use of a molecular photosensitizer as a reducing agent in metallic nanoparticle syntheses. Using this approach, we report three key findings. (1) Nanoparticles produced by photocatalytic reduction form via a continuous nucleation mechanism, as opposed to burst and burst-like nucleation processes typically observed in metal nanoparticle syntheses. (2) Because nucleation is continuous, as long as the solution is irradiated (and there remains excess reagents in solution), nanoparticle nucleation can be turned on and off by controlling the timing and duration of irradiation, with no observable particle growth. (3) This synthetic method extends to the formation of bimetallic nanoparticles, which we show also form via a continuous nucleation pathway, and follow predicted patterns of metal incorporation as a function of the magnitude of the difference between the reduction potentials of the two metals. Taken together, these results establish a versatile synthetic method for the formation of multimetallic nanoparticles using visible light.

2.
J Phys Chem B ; 126(22): 4132-4142, 2022 06 09.
Article in English | MEDLINE | ID: mdl-35609342

ABSTRACT

The diffusion of poly(ethylene glycol) methyl ether thiol (PEGSH)-functionalized gold nanoparticles (NPs) was measured in polyacrylamide gels with various cross-linking densities. The molecular weight of the PEGSH ligand and particle core size were both varied to yield particles with hydrodynamic diameters ranging from 7 to 21 nm. The gel mesh size was varied from approximately 36 to 60 nm by controlling the cross-linking density of the gel. Because high-molecular-weight ligands are expected to yield more compressible particles, we expected the diffusion constants of the NPs to depend on their hard/soft ratios (where the hard component of the particle consists of the particle core and the soft component of the particle consists of the ligand shell). However, our measurements revealed that NP diffusion coefficients resulted primarily from changes in the overall hydrodynamic diameter and not the ratio of particle core size to ligand size. Across all particles and gels, we found that the diffusion coefficient was well predicted by the confinement ratio calculated from the diameter of the particle and an estimate of the gel mesh size obtained from the elastic blob model and was well described using a hopping model for nanoparticle diffusion. These results suggest that the elastic blob model provides a reasonable estimate of the mesh size that particles "see" as they diffuse through the gel. This work brings new insights into the factors that dictate how NPs move through polymer gels and will inform the development of hydrogel nanocomposites for applications such as drug delivery in heterogeneous, viscoelastic biological materials.


Subject(s)
Metal Nanoparticles , Nanocomposites , Diffusion , Gold , Hydrogels , Ligands , Particle Size
4.
Immunity ; 49(4): 725-739.e6, 2018 10 16.
Article in English | MEDLINE | ID: mdl-30314758

ABSTRACT

Systemic Lupus Erythematosus (SLE) is characterized by B cells lacking IgD and CD27 (double negative; DN). We show that DN cell expansions reflected a subset of CXCR5- CD11c+ cells (DN2) representing pre-plasma cells (PC). DN2 cells predominated in African-American patients with active disease and nephritis, anti-Smith and anti-RNA autoantibodies. They expressed a T-bet transcriptional network; increased Toll-like receptor-7 (TLR7); lacked the negative TLR regulator TRAF5; and were hyper-responsive to TLR7. DN2 cells shared with activated naive cells (aNAV), phenotypic and functional features, and similar transcriptomes. Their PC differentiation and autoantibody production was driven by TLR7 in an interleukin-21 (IL-21)-mediated fashion. An in vivo developmental link between aNAV, DN2 cells, and PC was demonstrated by clonal sharing. This study defines a distinct differentiation fate of autoreactive naive B cells into PC precursors with hyper-responsiveness to innate stimuli, as well as establishes prominence of extra-follicular B cell activation in SLE, and identifies therapeutic targets.


Subject(s)
B-Lymphocyte Subsets/immunology , B-Lymphocytes/immunology , Lupus Erythematosus, Systemic/immunology , Toll-Like Receptor 7/immunology , Adult , Aged , Aged, 80 and over , B-Lymphocyte Subsets/metabolism , B-Lymphocytes/metabolism , Female , Gene Regulatory Networks/genetics , Gene Regulatory Networks/immunology , Humans , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/metabolism , Male , Middle Aged , Plasma Cells/immunology , Plasma Cells/metabolism , Toll-Like Receptor 7/genetics , Toll-Like Receptor 7/metabolism , Transcriptome/genetics , Transcriptome/immunology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...