Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Space Sci Rev ; 218(8): 65, 2022.
Article in English | MEDLINE | ID: mdl-36397966

ABSTRACT

The environment of a comet is a fascinating and unique laboratory to study plasma processes and the formation of structures such as shocks and discontinuities from electron scales to ion scales and above. The European Space Agency's Rosetta mission collected data for more than two years, from the rendezvous with comet 67P/Churyumov-Gerasimenko in August 2014 until the final touch-down of the spacecraft end of September 2016. This escort phase spanned a large arc of the comet's orbit around the Sun, including its perihelion and corresponding to heliocentric distances between 3.8 AU and 1.24 AU. The length of the active mission together with this span in heliocentric and cometocentric distances make the Rosetta data set unique and much richer than sets obtained with previous cometary probes. Here, we review the results from the Rosetta mission that pertain to the plasma environment. We detail all known sources and losses of the plasma and typical processes within it. The findings from in-situ plasma measurements are complemented by remote observations of emissions from the plasma. Overviews of the methods and instruments used in the study are given as well as a short review of the Rosetta mission. The long duration of the Rosetta mission provides the opportunity to better understand how the importance of these processes changes depending on parameters like the outgassing rate and the solar wind conditions. We discuss how the shape and existence of large scale structures depend on these parameters and how the plasma within different regions of the plasma environment can be characterised. We end with a non-exhaustive list of still open questions, as well as suggestions on how to answer them in the future.

2.
J Geophys Res Space Phys ; 127(1): e2021JA029942, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35865029

ABSTRACT

We present fast algorithms to automatically estimate the statistical position of the bow shock from spacecraft data, using existing analytical two-dimensional (2D) and three-dimensional (3D) models of the shock surface. We derive expressions of the standoff distances in 2D and 3D and of the normal to the bow shock at any given point on it. Two simple bow shock detection algorithms are constructed, one solely based on a geometrical predictor from existing models, the other using this predicted position to further refine it with the help of magnetometer data, an instrument flown on many planetary missions. Both empirical techniques are applicable to any planetary environment with a defined shock structure. Applied to the Martian environment and the NASA/MAVEN mission, the predicted shock position is on average within 0.15 planetary radius R p of the bow shock crossing. Using the predictor-corrector algorithm, this estimate is further refined to within a few minutes of the true crossing (≈0.05R p). Between 2014 and 2021, we detect 14,929 clear bow shock crossings, predominantly quasi-perpendicular. Thanks to 2D conic and 3D quadratic fits, we investigate the variability of the shock surface with respect to Mars Years (MY), solar longitude (Ls), and solar EUV flux levels. Although asymmetry in Y and Z Mars Solar Orbital coordinates is on average small, we show that for MY32 and MY35, Ls = [135°-225°] and high solar flux, it can become particularly noticeable, and is superimposed to the usual North-South asymmetry due in part to the presence of crustal magnetic fields.

3.
J Geophys Res Space Phys ; 127(1): e2021JA029811, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35860696

ABSTRACT

We present an in-depth analysis of a time interval when quasi-linear mirror mode structures were detected by magnetic field and plasma measurements as observed by the NASA/Mars Atmosphere and Volatile EvolutioN spacecraft. We employ ion and electron spectrometers in tandem to support the magnetic field measurements and confirm that the signatures are indeed mirror modes. Wedged against the magnetic pile-up boundary, the low-frequency signatures last on average ∼ 10 s with corresponding sizes of the order of 15-30 upstream solar wind proton thermal gyroradii, or 10-20 proton gyroradii in the immediate wake of the quasi-perpendicular bow shock. Their peak-to-peak amplitudes are of the order of 30-35 nT with respect to the background field, and appear as a mixture of dips and peaks, suggesting that they may have been at different stages in their evolution. Situated in a marginally stable plasma with ß â€– âˆ¼ 1, we hypothesize that these so-called magnetic bottles, containing a relatively higher energy and denser ion population with respect to the background plasma, are formed upstream of the spacecraft behind the quasi-perpendicular shock. These signatures are very reminiscent of magnetic bottles found at other unmagnetized objects such as Venus and comets, also interpreted as mirror modes. Our case study constitutes the first unmistakable identification and characterization of mirror modes at Mars from the joint points of view of magnetic field, electron and ion measurements. Up until now, the lack of high-temporal resolution plasma measurements has prevented such an in-depth study.

SELECTION OF CITATIONS
SEARCH DETAIL
...