Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 548
Filter
1.
Radiother Oncol ; : 110439, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39032835

ABSTRACT

INTRODUCTION: To evaluate the feasibility, efficacy and safety of stereotactic ablative radiotherapy (SABR) to the primary tumor and lymph nodes in patients with locally advanced non-small cell lung cancer (LA-NSCLC) who are ineligible for or refused concomitant chemoradiation. MATERIALS AND METHODS: In accordance with the PRISMA and MOOSE guidelines, a systematic review with meta-analysis was conducted. The study included reports that assessed the outcomes of SABR treatment in patients with LA-NSCLC. Studies evaluating SBRT as a boost following primary radiotherapy were excluded. The primary outcomes measured were local control (LC) and overall survival (OS). The secondary endpoint was the incidence of severe toxicity (grades 3-5). A meta-regression analysis was performed to explore the relationship between LC, OS, and severe toxicity. The Biologically Effective Dose (BED) was analyzed as a continuous variable. Statistical significance was defined as a p-value < 0.05. RESULTS: A total of seven studies (3 prospective and 4 retrospective studies) involving 268 patients (SBRT to primary and lymph nodes) were included in the analysis. The pooled 1-year LC rate was 80 % (95 % CI: 63-94 %), and the factors significantly associated with LC were BEDGy10 (p = 0.005) and neoadjuvant chemotherapy (p = 0.005). The 1-year and 2-year OS rates were 74 % (95 % CI: 58-90 %) and 55 % (95 % CI: 34-76 %), respectively. Meta-regression analysis indicated a linear relationship between OS and LC, with a 0.7 % increase in OS for each 1 % improvement in LC (p = 0.005). The pooled rate of grade 3 acute toxicity was 5 % (95 % CI: 1-10 %), and the rate of grade 5 toxicity was 1.7 % (95 % CI: 0-3 %). CONCLUSION: Promising results (LC and OS) with limited toxicity (feasibility) using SABR in LA-NSCLC warrant further research, emphasizing the need for larger, well-designed trials for further validation of the approach.

2.
Front Oncol ; 14: 1375096, 2024.
Article in English | MEDLINE | ID: mdl-39055552

ABSTRACT

Purpose: To evaluate organ at risk (OAR) auto-segmentation in the head and neck region of computed tomography images using two different commercially available deep-learning-based auto-segmentation (DLAS) tools in a single institutional clinical applications. Methods: Twenty-two OARs were manually contoured by clinicians according to published guidelines on planning computed tomography (pCT) images for 40 clinical head and neck cancer (HNC) cases. Automatic contours were generated for each patient using two deep-learning-based auto-segmentation models-Manteia AccuContour and MIM ProtégéAI. The accuracy and integrity of autocontours (ACs) were then compared to expert contours (ECs) using the Sørensen-Dice similarity coefficient (DSC) and Mean Distance (MD) metrics. Results: ACs were generated for 22 OARs using AccuContour and 17 OARs using ProtégéAI with average contour generation time of 1 min/patient and 5 min/patient respectively. EC and AC agreement was highest for the mandible (DSC 0.90 ± 0.16) and (DSC 0.91 ± 0.03), and lowest for the chiasm (DSC 0.28 ± 0.14) and (DSC 0.30 ± 0.14) for AccuContour and ProtégéAI respectively. Using AccuContour, the average MD was<1mm for 10 of the 22 OARs contoured, 1-2mm for 6 OARs, and 2-3mm for 6 OARs. For ProtégéAI, the average mean distance was<1mm for 8 out of 17 OARs, 1-2mm for 6 OARs, and 2-3mm for 3 OARs. Conclusions: Both DLAS programs were proven to be valuable tools to significantly reduce the time required to generate large amounts of OAR contours in the head and neck region, even though manual editing of ACs is likely needed prior to implementation into treatment planning. The DSCs and MDs achieved were similar to those reported in other studies that evaluated various other DLAS solutions. Still, small volume structures with nonideal contrast in CT images, such as nerves, are very challenging and will require additional solutions to achieve sufficient results.

3.
Radiother Oncol ; 198: 110404, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38942121

ABSTRACT

PURPOSE: To investigate quality assurance (QA) techniques for in vivo dosimetry and establish its routine uses for proton FLASH small animal experiments with a saturated monitor chamber. METHODS AND MATERIALS: 227 mice were irradiated at FLASH or conventional (CONV) dose rates with a 250 MeV FLASH-capable proton beamline using pencil beam scanning to characterize the proton FLASH effect on abdominal irradiation and examining various endpoints. A 2D strip ionization chamber array (SICA) detector was positioned upstream of collimation and used for in vivo dose monitoring during irradiation. Before each irradiation series, SICA signal was correlated with the isocenter dose at each delivered dose rate. Dose, dose rate, and 2D dose distribution for each mouse were monitored with the SICA detector. RESULTS: Calibration curves between the upstream SICA detector signal and the delivered dose at isocenter had good linearity with minimal R2 values of 0.991 (FLASH) and 0.985 (CONV), and slopes were consistent for each modality. After reassigning mice, standard deviations were less than 1.85 % (FLASH) and 0.83 % (CONV) for all dose levels, with no individual subject dose falling outside a ± 3.6 % range of the designated dose. FLASH fields had a field-averaged dose rate of 79.0 ± 0.8 Gy/s and mean local average dose rate of 160.6 ± 3.0 Gy/s. In vivo dosimetry allowed for the accurate detection of variation between the delivered and the planned dose. CONCLUSION: In vivo dosimetry benefits FLASH experiments through enabling real-time dose and dose rate monitoring allowing mouse cohort regrouping when beam fluctuation causes delivered dose to vary from planned dose.

4.
J Appl Clin Med Phys ; : e14400, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831639

ABSTRACT

BACKGROUND: Quality assurance (QA) for ultra-high dose rate (UHDR) irradiation is a crucial aspect in the emerging field of FLASH radiotherapy (FLASH-RT). This innovative treatment approach delivers radiation at UHDR, demanding careful adoption of QA protocols and procedures. A comprehensive understanding of beam properties and dosimetry consistency is vital to ensure the safe and effective delivery of FLASH-RT. PURPOSE: To develop a comprehensive pre-treatment QA program for cyclotron-based proton pencil beam scanning (PBS) FLASH-RT. Establish appropriate tolerances for QA items based on this study's outcomes and TG-224 recommendations. METHODS: A 250 MeV proton spot pattern was designed and implemented using UHDR with a 215nA nozzle beam current. The QA pattern that covers a central uniform field area, various spot spacings, spot delivery modes and scanning directions, and enabling the assessment of absolute, relative and temporal dosimetry QA parameters. A strip ionization chamber array (SICA) and an Advanced Markus chamber were utilized in conjunction with a 2 cm polyethylene slab and a range (R80) verification wedge. The data have been monitored for over 3 months. RESULTS: The relative dosimetries were compliant with TG-224. The variations of temporal dosimetry for scanning speed, spot dwell time, and spot transition time were within ± 1 mm/ms, ± 0.2 ms, and ± 0.2 ms, respectively. While the beam-to-beam absolute output on the same day reached up to 2.14%, the day-to-day variation was as high as 9.69%. High correlation between the absolute dose and dose rate fluctuations were identified. The dose rate of the central 5 × 5 cm2 field exhibited variations within 5% of the baseline value (155 Gy/s) during an experimental session. CONCLUSIONS: A comprehensive QA program for FLASH-RT was developed and effectively assesses the performance of a UHDR delivery system. Establishing tolerances to unify standards and offering direction for future advancements in the evolving FLASH-RT field.

6.
Article in English | MEDLINE | ID: mdl-38879087

ABSTRACT

PURPOSE: This study aimed to investigate a dose rate optimization framework based on the spot-scanning patterns to improve ultrahigh-dose-rate coverage of critical organs at risk (OARs) for proton pencil beam scanning (PBS) FLASH radiation therapy (ultrahigh dose-rate (often referred to as >40 Gy per second) delivery) and present implementation of a genetic algorithm (GA) method for spot sequence optimization to achieve PBS FLASH dose rate optimization under relatively low nozzle beam currents. METHODS AND MATERIALS: First, a multifield FLASH plan was developed to meet all the dosimetric goals and optimal FLASH dose rate coverage by considering the deliverable minimum monitor unit constraint. Then, a GA method was implemented into the in-house treatment platform to maximize the dose rate by exploring the best spot delivery sequence. A phantom study was performed to evaluate the effectiveness of the dose rate optimization. Then, 10 consecutive plans for patients with lung cancer previously treated using PBS intensity-modulated proton therapy were optimized using 45 GyRBE in 3 fractions for both transmission and Bragg peak FLASH radiation therapy for further validation. The spot delivery sequence of each treatment field was optimized using this GA. The ultrahigh-dose-rate-volume histogram and dose rate coverage V40GyRBE/s were investigated to assess the efficacy of dose rate optimization quantitatively. RESULTS: Using a relatively low monitor unit/spot of 150, corresponding to a nozzle beam current of 65 nA, the FLASH dose rate ratio V40GyRBE/s of the OAR contour of the core was increased from 0% to ∼60% in the phantom study. In the patients with lung cancer, the ultrahigh-dose-rate coverage V40GyRBE/s was improved from 15.2%, 15.5%, 17.6%, and 16.0% before the delivery sequence optimization to 31.8%, 43.5%, 47.6%, and 30.5% after delivery sequence optimization in the lungs-GTV (gross tumor volume), spinal cord, esophagus, and heart (for all, P < .001). When the beam current increased to 130 nA, V40GyRBE/s was improved from 45.1%, 47.1%, 51.2%, and 51.4% to 65.3%, 83.5%, 88.1%, and 69.4% (P < .05). The averaged V40GyRBE/s for the target and OARs increased from 12.9% to 41.6% and 46.3% to 77.5% for 65 and 130 nA, respectively, showing significant improvements based on a clinical proton system. After optimizing the dose rate for the Bragg peak FLASH technique with a beam current of 340 nA, the V40GyRBE/s values for the lung GTV, spinal cord, esophagus, and heart were increased by 8.9%, 15.8%, 22%, and 20.8%, respectively. CONCLUSIONS: An optimal plan quality can be maintained as the spot delivery sequence optimization is a separate independent process after the plan optimization. Both the phantom and patient results demonstrated that novel spot delivery sequence optimization can effectively improve the ultrahigh-dose-rate coverage for critical OARs, which can potentially be applied in clinical practice for better OARs-sparing efficacy.

7.
Ann Palliat Med ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38902990

ABSTRACT

Bone metastases are a common and debilitating consequence of advanced cancer, often necessitating palliative radiation therapy (RT) for pain relief. Reirradiation (reRT) of bone metastases is often considered after lack of pain relief following an initial course of RT, after a partial but unsatisfying pain response to an initial course of radiotherapy, or after pain recurrence following a complete or partial pain response to an initial course of RT. The NCIC CTG SC.20 trial, a landmark multicenter, randomized, non-blinded, controlled non-inferiority trial, addressed the critical question of optimal dose fractionation for reRT in this patient population. This trial compared the efficacy and toxicity of a single 8 Gy fraction to multiple fractions totaling 20 Gy in 850 patients with painful bone metastases requiring reRT. The primary endpoint was overall pain response at 2 months, with secondary endpoints of quality of life (QoL) measures, functional interference, and toxicity profiles assessed using patient-reported questionnaires and the European Organisation for Research and Treatment of Cancer (EORTC) QLQ-C30. The intention-to-treat analysis revealed no significant difference in pain response between the two arms, meeting the pre-specified non-inferiority criteria. The per-protocol analysis suggested a potential benefit for a subset of patients receiving multiple fractions, although this was not statistically robust. Acute toxicities were more prevalent in the multiple fractions arm, with implications for patient comfort and healthcare utilization. Importantly, responders to reRT reported significant improvements in functional interference and QoL. The trial's findings support the use of a patient-centric approach to palliative RT, highlighting the viability of a single 8 Gy fraction as a less toxic and more convenient treatment option, albeit with consideration for individual patient circumstances. These results have significant implications for clinical practice, potentially reducing healthcare burdens while optimizing patient convenience during palliative care for painful bone metastases.

8.
Cancers (Basel) ; 16(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38791901

ABSTRACT

BACKGROUND: Accurate, reliable, non-invasive assessment of patients diagnosed with prostate cancer is essential for proper disease management. Quantitative assessment of multi-parametric MRI, such as through artificial intelligence or spectral/statistical approaches, can provide a non-invasive objective determination of the prostate tumor aggressiveness without side effects or potential poor sampling from needle biopsy or overdiagnosis from prostate serum antigen measurements. To simplify and expedite prostate tumor evaluation, this study examined the efficacy of autonomously extracting tumor spectral signatures for spectral/statistical algorithms for spatially registered bi-parametric MRI. METHODS: Spatially registered hypercubes were digitally constructed by resizing, translating, and cropping from the image sequences (Apparent Diffusion Coefficient (ADC), High B-value, T2) from 42 consecutive patients in the bi-parametric MRI PI-CAI dataset. Prostate cancer blobs exceeded a threshold applied to the registered set from normalizing the registered set into an image that maximizes High B-value, but minimizes the ADC and T2 images, appearing "green" in the color composite. Clinically significant blobs were selected based on size, average normalized green value, sliding window statistics within a blob, and position within the hypercube. The center of mass and maximized sliding window statistics within the blobs identified voxels associated with tumor signatures. We used correlation coefficients (R) and p-values, to evaluate the linear regression fits of the z-score and SCR (with processed covariance matrix) to tumor aggressiveness, as well as Area Under the Curves (AUC) for Receiver Operator Curves (ROC) from logistic probability fits to clinically significant prostate cancer. RESULTS: The highest R (R > 0.45), AUC (>0.90), and lowest p-values (<0.01) were achieved using z-score and modified registration applied to the covariance matrix and tumor signatures selected from the "greenest" parts from the selected blob. CONCLUSIONS: The first autonomous tumor signature applied to spatially registered bi-parametric MRI shows promise for determining prostate tumor aggressiveness.

9.
Int J Part Ther ; 11: 100020, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38757080

ABSTRACT

Purpose: To report the current practice pattern of the proton stereotactic body radiation therapy (SBRT) for prostate treatments. Materials and Methods: A survey was designed to inquire about the practice of proton SBRT treatment for prostate cancer. The survey was distributed to all 30 proton therapy centers in the United States that participate in the National Clinical Trial Network in February, 2023. The survey focused on usage, patient selection criteria, prescriptions, target contours, dose constraints, treatment plan optimization and evaluation methods, patient-specific QA, and image-guided radiation therapy (IGRT) methods. Results: We received responses from 25 centers (83% participation). Only 8 respondent proton centers (32%) reported performing SBRT of the prostate. The remaining 17 centers cited 3 primary reasons for not offering this treatment: no clinical need, lack of volumetric imaging, and/or lack of clinical evidence. Only 1 center cited the reduction in overall reimbursement as a concern for not offering prostate SBRT. Several common practices among the 8 centers offering SBRT for the prostate were noted, such as using Hydrogel spacers, fiducial markers, and magnetic resonance imaging (MRI) for target delineation. Most proton centers (87.5%) utilized pencil beam scanning (PBS) delivery and completed Imaging and Radiation Oncology Core (IROC) phantom credentialing. Treatment planning typically used parallel opposed lateral beams, and consistent parameters for setup and range uncertainties were used for plan optimization and robustness evaluation. Measurements-based patient-specific QA, beam delivery every other day, fiducial contours for IGRT, and total doses of 35 to 40 GyRBE were consistent across all centers. However, there was no consensus on the risk levels for patient selection. Conclusion: Prostate SBRT is used in about 1/3 of proton centers in the US. There was a significant consistency in practices among proton centers treating with proton SBRT. It is possible that the adoption of proton SBRT may become more common if proton SBRT is more commonly offered in clinical trials.

10.
Int J Part Ther ; 11: 100005, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38757072

ABSTRACT

Purpose: To report demographic and clinical characteristics of patients who were more likely to receive proton beam therapy (PBT) than photon therapy from facilities with access to proton centers. Materials and Methods: We utilized the national cancer database to identify the facilities with access to PBT between 2004 and 2015 and compared the relative usage of photons and PBT for demographic and clinical scenarios in breast, prostate, and nonsmall cell cancer. Results: In total, 231 facilities with access to proton centers accounted for 168 323 breast, 39 975 lung, and 77 297 prostate cancer patients treated definitively. Proton beam therapy was used in 0.5%, 1.5%, and 8.9% of breast, lung, and prostate cases. Proton beam therapy was correlated with a farther distance traveled and longer start time from diagnosis for each site (P < .05).For breast, demographic correlates of PBT were treatment in the west coast (odds ratio [OR] = 4.81), age <60 (OR = 1.25), white race (OR = 1.94), and metropolitan area (OR = 1.58). Left-sided cancers (OR = 1.28), N2 (OR = 1.71), non-ER+/PR+/Her2Neu- cancers (OR = 1.24), accelerated partial breast irradiation (OR = 1.98), and hypofractionation (OR = 2.35) were predictors of PBT.For nonsmall cell cancer, demographic correlates of PBT were treatment in the south (OR = 2.6), metropolitan area (OR = 1.72), and Medicare insurance (OR = 1.64). Higher comorbid score (OR = 1.36), later year treated (OR = 3.16), and hypofractionation (not SBRT) (OR = 3.7) were predictors of PBT.For prostate, correlates of PBT were treatment in the west coast (OR = 2.48), age <70 (OR = 1.19), white race (OR = 1.41), metropolitan area (OR = 1.25), higher income/education (OR = 1.25), and treatment at an academic center (OR = 33.94). Lower comorbidity score (OR = 1.42), later year treated (OR = 1.37), low-risk disease (OR = 1.45), definitive compared to postoperative (OR = 6.10), and conventional fractionation (OR = 1.64) were predictors of PBT. Conclusion: Even for facilities with established referrals to proton centers, PBT utilization was low; socioeconomic status was potentially a factor. Proton beam therapy was more often used with left-sided breast and low-risk prostate cancers, without a clear clinical pattern in lung cancer.

11.
Int J Part Ther ; 11: 100019, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38757077

ABSTRACT

Purpose: Radiotherapy delivery in the definitive management of lower gastrointestinal (LGI) tract malignancies is associated with substantial risk of acute and late gastrointestinal (GI), genitourinary, dermatologic, and hematologic toxicities. Advanced radiation therapy techniques such as proton beam therapy (PBT) offer optimal dosimetric sparing of critical organs at risk, achieving a more favorable therapeutic ratio compared with photon therapy. Materials and Methods: The international Particle Therapy Cooperative Group GI Subcommittee conducted a systematic literature review, from which consensus recommendations were developed on the application of PBT for LGI malignancies. Results: Eleven recommendations on clinical indications for which PBT should be considered are presented with supporting literature, and each recommendation was assessed for level of evidence and strength of recommendation. Detailed technical guidelines pertaining to simulation, treatment planning and delivery, and image guidance are also provided. Conclusion: PBT may be of significant value in select patients with LGI malignancies. Additional clinical data are needed to further elucidate the potential benefits of PBT for patients with anal cancer and rectal cancer.

13.
Adv Radiat Oncol ; 9(5): 101459, 2024 May.
Article in English | MEDLINE | ID: mdl-38596455

ABSTRACT

Purpose: Treatment options for recurrent esophageal cancer (EC) previously treated with radiation therapy (RT) are limited. Reirradiation (reRT) with proton beam therapy (PBT) can offer lower toxicities by limiting doses to surrounding tissues. In this study, we present the first multi-institutional series reporting on toxicities and outcomes after reRT for locoregionally recurrent EC with PBT. Methods and Materials: Analysis of the prospective, multicenter, Proton Collaborative Group registry of patients with recurrent EC who had previously received photon-based RT and underwent PBT reRT was performed. Patient/tumor characteristics, treatment details, outcomes, and toxicities were collected. Local control (LC), distant metastasis-free survival (DMFS), and overall survival (OS) were estimated using the Kaplan-Meier method. Event time was determined from reRT start. Results: Between 2012 and 2020, 31 patients received reRT via uniform scanning/passive scattering (61.3%) or pencil beam scanning (38.7%) PBT at 7 institutions. Median prior RT, PBT reRT, and cumulative doses were 50.4 Gy (range, 37.5-110.4), 48.6 Gy (relative biological effectiveness) (25.2-72.1), and 99.9 Gy (79.1-182.5), respectively. Of these patients, 12.9% had 2 prior RT courses, and 67.7% received PBT with concurrent chemotherapy. Median follow-up was 7.2 months (0.9-64.7). Post-PBT, there were 16.7% locoregional only, 11.1% distant only, and 16.7% locoregional and distant recurrences. Six-month LC, DMFS, and OS were 80.5%, 83.4%, and 69.1%, respectively. One-year LC, DMFS, and OS were 67.1%, 83.4%, and 27%, respectively. Acute grade ≥3 toxicities occurred in 23% of patients, with 1 acute grade 5 toxicity secondary to esophageal hemorrhage, unclear if related to reRT or disease progression. No grade ≥3 late toxicities were reported. Conclusions: In the largest report to date of PBT for reRT in patients with recurrent EC, we observed acceptable acute toxicities and encouraging rates of disease control. However, these findings are limited by the poor prognoses of these patients, who are at high risk of mortality. Further research is needed to better assess the long-term benefits and toxicities of PBT in this specific patient population.

15.
Cancers (Basel) ; 16(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38672616

ABSTRACT

BACKGROUND: Electromagnetic transponders bronchoscopically implanted near the tumor can be used to monitor deep inspiration breath hold (DIBH) for thoracic radiation therapy (RT). The feasibility and safety of this approach require further study. METHODS: We enrolled patients with primary lung cancer or lung metastases. Three transponders were implanted near the tumor, followed by simulation with DIBH, free breathing, and 4D-CT as backup. The initial gating window for treatment was ±5 mm; in a second cohort, the window was incrementally reduced to determine the smallest feasible gating window. The primary endpoint was feasibility, defined as completion of RT using transponder-guided DIBH. Patients were followed for assessment of transponder- and RT-related toxicity. RESULTS: We enrolled 48 patients (35 with primary lung cancer and 13 with lung metastases). The median distance of transponders to tumor was 1.6 cm (IQR 0.6-2.8 cm). RT delivery ranged from 3 to 35 fractions. Transponder-guided DIBH was feasible in all but two patients (96% feasible), where it failed because the distance between the transponders and the antenna was >19 cm. Among the remaining 46 patients, 6 were treated prone to keep the transponders within 19 cm of the antenna, and 40 were treated supine. The smallest feasible gating window was identified as ±3 mm. Thirty-nine (85%) patients completed one year of follow-up. Toxicities at least possibly related to transponders or the implantation procedure were grade 2 in six patients (six incidences, cough and hemoptysis), grade 3 in three patients (five incidences, cough, dyspnea, pneumonia, and supraventricular tachycardia), and grade 4 pneumonia in one patient (occurring a few days after implantation but recovered fully and completed RT). Toxicities at least possibly related to RT were grade 2 in 18 patients (41 incidences, most commonly cough, fatigue, and pneumonitis) and grade 3 in four patients (seven incidences, most commonly pneumonia), and no patients had grade 4 or higher toxicity. CONCLUSIONS: Bronchoscopically implanted electromagnetic transponder-guided DIBH lung RT is feasible and safe, allowing for precise tumor targeting and reduced normal tissue exposure. Transponder-antenna distance was the most common challenge due to a limited antenna range, which could sometimes be circumvented by prone positioning.

16.
Front Oncol ; 14: 1374258, 2024.
Article in English | MEDLINE | ID: mdl-38590650

ABSTRACT

Introduction: Invisible ink tattoos (IITs) avoid cosmetic permanence of visible ink tattoos (VITs) while serving as more reliable landmarks for radiation setup than tattooless setups. This trial evaluated patient-reported preference and feasibility of IIT implementation. Methods and materials: In an IRB-approved, single institution, prospective trial, patients receiving proton therapy underwent IIT-based treatment setup. A survey tool assessed patient preference on tattoos using a Likert scale. Matched patients treated using our institutional standard tattooless setup were identified; treatment times and image guidance requirements were evaluated between tattooless and IIT-based alignment approaches. Distribution differences were estimated using Wilcoxon rank-sum tests or Chi-square tests. Results: Of 94 eligible patients enrolled, median age was 58 years, and 58.5% were female. Most common treatment sites were breast (18.1%), lung (17.0%) and pelvic (14.9%). Patients preferred to receive IITs versus VITs (79.8% pre-treatment and 75.5% post-treatment, respectively). Patients were willing to travel farther from home to avoid VITs versus IITs (p<0.01). Females were willing to travel (45.5% vs. 23.1%; p=0.04) and pay additional money to avoid VITs (34.5% vs. 5.1%; p<0.01). Per-fraction average +treatment time and time from on table/in room to first beam were shorter with IIT-based vs. tattooless setup (12.3min vs. 14.1min; p=0.04 and 24.1min vs. 26.2min; p=0.02, respectively). Discussion: In the largest prospective trial on IIT-based radiotherapy setup to date, we found that patients prefer IITs to VITs. Additionally, IIT-based alignment is an effective and efficient strategy in comparison with tattooless setup. Standard incorporation of IITs for patient setup should be strongly considered.

17.
Ann Palliat Med ; 13(3): 620-626, 2024 May.
Article in English | MEDLINE | ID: mdl-38600814

ABSTRACT

Superior vena cava (SVC) syndrome occurs due to obstructed blood flow through the SVC. It can present clinically on a spectrum, between asymptomatic and life-threatening emergency. Patients commonly report a feeling of fullness in the head, facial, neck and upper extremity edema, and dyspnea. On imaging, patients commonly have superior mediastinal widening and pleural effusion. The majority of cases are due to malignant causes, with non-small cell lung cancer, small cell lung cancer, and lymphoma the most commonly associated malignancies. When evaluating patients, a complete staging workup is recommended, as it will determine whether treatment should be definitive/curative or palliative in intent. If the patient requires urgent treatment of venous obstruction, such as in the cases of acute central airway obstruction, severe laryngeal edema and/or coma from cerebral edema, direct opening of the occlusion by endovascular stenting and angioplasty with thrombolysis should be considered. Such an approach can provide immediate relief of symptoms before cancer-specific therapies are initiated. The intent of treatment is to manage the underlying disease while palliating symptoms. Treatment approaches most commonly employ chemotherapy and/or radiation therapy depending on the primary histology. Mildly hypofractionated radiation regimens are most commonly employed and achieve high rates of symptomatic responses generally within 2 weeks of initiating therapy.


Subject(s)
Superior Vena Cava Syndrome , Superior Vena Cava Syndrome/therapy , Superior Vena Cava Syndrome/etiology , Humans , Palliative Care/methods , Lung Neoplasms/complications , Lung Neoplasms/therapy
19.
Ann Palliat Med ; 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38600819

ABSTRACT

An increasing number of patients irradiated for metastatic epidural spinal cord compression (MESCC) experience an in-field recurrence and require a second course of radiotherapy. Reirradiation can be performed with conventional radiotherapy or highly-conformal techniques such as intensity-modulated radiation therapy (IMRT), volumetric modulated arc therapy (VMAT), and stereotactic body radiation therapy (SBRT). When using conventional radiotherapy, a cumulative biologically effective dose (BED) ≤120 calculated with an α/ß value of 2 Gy (Gy2) was not associated with radiation myelopathy in a retrospective study of 124 patients and is considered safe. In that study, conventional reirradiation led to improvements of motor deficits in 36% of patients and stopped further symptomatic progression in another 50% (overall response 86%). In four other studies, overall response rates were 82-89%. In addition to the cumulative BED or equivalent dose in 2 Gy fractions (EQD2), the interval between both radiotherapy courses <6 months and a BED per course ≥102 Gy2 (corresponding to an EQD2 ≥51 Gy2) were identified as risk factors for radiation myelopathy. Without these risk factors, a BED >120 Gy2 may be possible. Scoring tools have been developed that can assist physicians in estimating the risk of radiation myelopathy and selecting the appropriate dose-fractionation regimen of re-treatment. Reirradiation of MESCC may also be performed with highly-conformal radiotherapy. With IMRT or VMAT, rates of pain relief and improvement of neurologic symptoms of 60-93.5% and 42-73%, respectively, were achieved. One-year local control rates ranged between 55% and 88%. Rates of myelopathy or radiculopathy and vertebral compression fractures were 0% and 0-9.3%, respectively. With SBRT, rates of pain relief were 65-86%. Two studies reported improvements in neurologic symptoms of 0% and 82%, respectively. One-year local control rates were 74-83%. Rates of myelopathy or radiculopathy and vertebral compression fractures were 0-4.5% and 4.5-13.8%, respectively. For SBRT, a cumulative maximum EQD2 to thecal sac ≤70 Gy2, a maximum EQD2 of SBRT ≤25 Gy2, a ratio ≤0.5 of thecal sac maximum EQD2 of SBRT to maximum cumulative EQD2, and an interval between both courses ≥5 months were associated with a lower risk of myelopathy. Additional prospective trials are required to better define the options of reirradiation of MESCC.

20.
JAMA Oncol ; 10(6): 799-806, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38602670

ABSTRACT

Importance: The treatment of locally advanced non-small cell lung cancer (LA-NSCLC) has been informed by more than 5 decades of clinical trials and other relevant literature. However, controversies remain regarding the application of various radiation and systemic therapies in commonly encountered clinical scenarios. Objective: To develop case-referenced consensus and evidence-based guidelines to inform clinical practice in unresectable LA-NSCLC. Evidence Review: The American Radium Society (ARS) Appropriate Use Criteria (AUC) Thoracic Committee guideline is an evidence-based consensus document assessing various clinical scenarios associated with LA-NSCLC. A systematic review of the literature with evidence ratings was conducted to inform the appropriateness of treatment recommendations by the ARS AUC Thoracic Committee for the management of unresectable LA-NSCLC. Findings: Treatment appropriateness of a variety of LA-NSCLC scenarios was assessed by a consensus-based modified Delphi approach using a range of 3 points to 9 points to denote consensus agreement. Committee recommendations were vetted by the ARS AUC Executive Committee and a 2-week public comment period before official approval and adoption. Standard of care management of good prognosis LA-NSCLC consists of combined concurrent radical (60-70 Gy) platinum-based chemoradiation followed by consolidation durvalumab immunotherapy (for patients without progression). Planning and delivery of locally advanced lung cancer radiotherapy usually should be performed using intensity-modulated radiotherapy techniques. A variety of palliative and radical fractionation schedules are available to treat patients with poor performance and/or pulmonary status. The salvage therapy for a local recurrence after successful primary management is complex and likely requires both multidisciplinary input and shared decision-making with the patient. Conclusions and Relevance: Evidence-based guidance on the management of various unresectable LA-NSCLC scenarios is provided by the ARS AUC to optimize multidisciplinary patient care for this challenging patient population.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/therapy , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/therapy , Lung Neoplasms/pathology , Consensus , Societies, Medical , United States , Chemoradiotherapy/standards
SELECTION OF CITATIONS
SEARCH DETAIL
...