Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Neurophotonics ; 11(Suppl 1): S11511, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38799809

ABSTRACT

Significance: Motion artifacts in the signals recorded during optical fiber-based measurements can lead to misinterpretation of data. In this work, we address this problem during in-vivo rodent experiments and develop a motion artifacts correction (MAC) algorithm for single-fiber system (SFS) hemodynamics measurements from the brains of rodents. Aim: (i) To distinguish the effect of motion artifacts in the SFS signals. (ii) Develop a MAC algorithm by combining information from the experiments and simulations and validate it. Approach: Monte-Carlo (MC) simulations were performed across 450 to 790 nm to identify wavelengths where the reflectance is least sensitive to blood absorption-based changes. This wavelength region is then used to develop a quantitative metric to measure motion artifacts, termed the dissimilarity metric (DM). We used MC simulations to mimic artifacts seen during experiments. Further, we developed a mathematical model describing light intensity at various optical interfaces. Finally, an MAC algorithm was formulated and validated using simulation and experimental data. Results: We found that the 670 to 680 nm wavelength region is relatively less sensitive to blood absorption. The standard deviation of DM (σDM) can measure the relative magnitude of motion artifacts in the SFS signals. The artifacts cause rapid shifts in the reflectance data that can be modeled as transmission changes in the optical lightpath. The changes observed during the experiment were found to be in agreement to those obtained from MC simulations. The mathematical model developed to model transmission changes to represent motion artifacts was extended to an MAC algorithm. The MAC algorithm was validated using simulations and experimental data. Conclusions: We distinguished motion artifacts from SFS signals during in vivo hemodynamic monitoring experiments. From simulation and experimental data, we showed that motion artifacts can be modeled as transmission changes. The developed MAC algorithm was shown to minimize artifactual variations in both simulation and experimental data.

2.
Nat Commun ; 14(1): 8522, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38129411

ABSTRACT

Recalling a salient experience provokes specific behaviors and changes in the physiology or internal state. Relatively little is known about how physiological memories are encoded. We examined the neural substrates of physiological memory by probing CRHPVN neurons of mice, which control the endocrine response to stress. Here we show these cells exhibit contextual memory following exposure to a stimulus with negative or positive valence. Specifically, a negative stimulus invokes a two-factor learning rule that favors an increase in the activity of weak cells during recall. In contrast, the contextual memory of positive valence relies on a one-factor rule to decrease activity of CRHPVN neurons. Finally, the aversive memory in CRHPVN neurons outlasts the behavioral response. These observations provide information about how specific physiological memories of aversive and appetitive experience are represented and demonstrate that behavioral readouts may not accurately reflect physiological changes invoked by the memory of salient experiences.


Subject(s)
Corticotropin-Releasing Hormone , Paraventricular Hypothalamic Nucleus , Mice , Animals , Corticotropin-Releasing Hormone/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Hypothalamus/metabolism , Neurons/metabolism , Stress, Physiological
3.
Bio Protoc ; 10(22): e3826, 2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33659478

ABSTRACT

There has been a clear movement in recent years towards the adoption of more naturalistic experimental regimes for the study of behavior and its underlying neural architecture. Here we provide a protocol that allows experimenters working with mice, to mimic a looming and advancing predatory threat from the sky. This approach is easy to implement and can be combined with sophisticated neural recordings that allow access to real-time activity during behavior. This approach offers another option in a battery of tests that allow for a more comprehensive understanding of defensive behaviors.

4.
Neurophotonics ; 5(2): 025006, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29687037

ABSTRACT

Fiber photometry uses genetically encoded optical reporters to link specific cellular activity in stereotaxically targeted brain structures to specific behaviors. There are still a number of barriers that have hindered the widespread adoption of this approach. This includes cost, but also the high-levels of light required to excite the fluorophore, limiting commercial systems to the investigation of short-term transients in neuronal activity to avoid damage of tissue by light. Here, we present a cost-effective optoelectronic system for in vivo fiber photometry that achieves high-sensitivity to changes in fluorescence intensity, enabling detection of optical transients of a popular calcium reporter with excitation powers as low as 100 nW. By realizing a coherent detection scheme and by using a photomultiplier tube as a detector, the system demonstrates reliable study of in vivo neuronal activity, positioning it for future use in the experiments inquiring into learning and memory processes. The system was applied to study stress-evoked calcium transients in corticotropin-releasing hormone neurons in the mouse hypothalamus.

SELECTION OF CITATIONS
SEARCH DETAIL
...