Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol ; 74(3): 1140-8, 2000 Feb.
Article in English | MEDLINE | ID: mdl-10627524

ABSTRACT

Point mutations were introduced into or near five conserved sequence motifs of the readthrough domain of the beet western yellows virus minor capsid protein P74. The mutant virus was tested for its ability to accumulate efficiently in agroinfected plants and to be transmitted by its aphid vector, Myzus persicae. The stability of the mutants in the agroinfected and aphid-infected plants was followed by sequence analysis of the progeny virus. Only the mutation Y201D was found to strongly inhibit virus accumulation in planta following agroinfection, but high accumulation levels were restored by reversion or pseudoreversion at this site. Four of the five mutants were poorly aphid transmissible, but in three cases successful transmission was restored by pseudoreversion or second-site mutations. The same second-site mutations in the nonconserved motif PVT(32-34) were shown to compensate for two distinct primary mutations (R24A and E59A/D60A), one on each side of the PVT sequence. In the latter case, a second-site mutation in the PVT motif restored the ability of the virus to move from the hemocoel through the accessory salivary gland following microinjection of mutant virus into the aphid hemocoel but did not permit virus movement across the epithelium separating the intestine from the hemocoel. Successful movement of the mutant virus across both barriers was accompanied by conversion of A59 to E or T, indicating that distinct features of the readthrough domain in this region operate at different stages of the transmission process.


Subject(s)
Aphids/virology , Capsid/genetics , Chenopodiaceae/virology , Luteovirus/genetics , Point Mutation/genetics , Amino Acid Sequence , Animals , Blotting, Western , Capsid/chemistry , Luteovirus/physiology , Molecular Sequence Data , Plant Diseases/virology , Plants, Toxic , Protoplasts/virology , RNA, Viral , Reverse Transcriptase Polymerase Chain Reaction , Nicotiana/virology
2.
Virology ; 230(2): 323-34, 1997 Apr 14.
Article in English | MEDLINE | ID: mdl-9143288

ABSTRACT

Virions of beet western yellows luteovirus contain a major capsid protein (P22.5) and a minor readthrough protein (P74), produced by translational readthrough of the major capsid protein sequence into the neighboring open reading frame, which encodes the readthrough domain (RTD). The RTD contains determinants required for efficient virus accumulation in agroinfected plants and for aphid transmission. The C-terminal halves of the RTD are not well conserved among luteoviruses but the N-terminal halves contain many conserved sequence motifs, including a proline-rich sequence separating the rest of the RTD from the sequence corresponding to the major coat protein. To map different biological functions to these regions, short in-frame deletions were introduced at different sites in the RTD and the mutant genomes were transmitted to protoplasts as transcripts and to Nicotiana clevelandii by agroinfection. Deletions in the nonconserved portion of the RTD did not block aphid transmission but had a moderate inhibitory effect on virus accumulation in plants and abolished symptoms. Deletion of the proline tract and the junction between the conserved and nonconserved regions inhibited readthrough protein accumulation in protoplasts by at least 10-fold. The mutants accumulated small amounts of virus in plants, did not induce symptoms, and were nontransmissible by aphids using agroinfected plants, extracts of infected protoplasts, or purified virus as a source of inoculum. Other deletions in the conserved portion of the RTD did not markedly diminish readthrough protein accumulation but abolished its incorporation into virions. These mutants accumulated to low levels in agroinfected plants and elicited symptoms, but could not be aphid-transmitted. A preliminary map has been produced mapping these functions to different parts of the RTD.


Subject(s)
Luteovirus/physiology , Viral Proteins/metabolism , Amino Acid Sequence , Animals , Aphids , Base Sequence , Insect Vectors , Luteovirus/genetics , Molecular Sequence Data , Mutagenesis , Plants/virology , Protoplasts , Vegetables/virology , Viral Proteins/genetics , Virus Assembly/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...