Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
J Infect Dis ; 228(5): 555-563, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37062677

ABSTRACT

Emerging variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) possess mutations that prevent antibody therapeutics from maintaining antiviral binding and neutralizing efficacy. Monoclonal antibodies (mAbs) shown to neutralize Wuhan-Hu-1 SARS-CoV-2 (ancestral) strain have reduced potency against newer variants. Plasma-derived polyclonal hyperimmune drugs have improved neutralization breadth compared with mAbs, but lower titers against SARS-CoV-2 require higher dosages for treatment. We previously developed a highly diverse, recombinant polyclonal antibody therapeutic anti-SARS-CoV-2 immunoglobulin hyperimmune (rCIG). rCIG was compared with plasma-derived or mAb standards and showed improved neutralization of SARS-CoV-2 across World Health Organization variants; however, its potency was reduced against some variants relative to ancestral, particularly omicron. Omicron-specific antibody sequences were enriched from yeast expressing rCIG-scFv and exhibited increased binding and neutralization to omicron BA.2 while maintaining ancestral strain binding and neutralization. Polyclonal antibody libraries such as rCIG can be utilized to develop antibody therapeutics against present and future SARS-CoV-2 threats.


Subject(s)
COVID-19 , Humans , SARS-CoV-2/genetics , Antibodies, Monoclonal/therapeutic use , Antiviral Agents , Saccharomyces cerevisiae , Antibodies, Neutralizing/therapeutic use , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Viral/therapeutic use
2.
Pathogens ; 11(7)2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35890050

ABSTRACT

Conventionally, hyperimmune globulin drugs manufactured from pooled immunoglobulins from vaccinated or convalescent donors have been used in treating infections where no treatment is available. This is especially important where multi-epitope neutralization is required to prevent the development of immune-evading viral mutants that can emerge upon treatment with monoclonal antibodies. Using microfluidics, flow sorting, and a targeted integration cell line, a first-in-class recombinant hyperimmune globulin therapeutic against SARS-CoV-2 (GIGA-2050) was generated. Using processes similar to conventional monoclonal antibody manufacturing, GIGA-2050, comprising 12,500 antibodies, was scaled-up for clinical manufacturing and multiple development/tox lots were assessed for consistency. Antibody sequence diversity, cell growth, productivity, and product quality were assessed across different manufacturing sites and production scales. GIGA-2050 was purified and tested for good laboratory procedures (GLP) toxicology, pharmacokinetics, and in vivo efficacy against natural SARS-CoV-2 infection in mice. The GIGA-2050 master cell bank was highly stable, producing material at consistent yield and product quality up to >70 generations. Good manufacturing practices (GMP) and development batches of GIGA-2050 showed consistent product quality, impurity clearance, potency, and protection in an in vivo efficacy model. Nonhuman primate toxicology and pharmacokinetics studies suggest that GIGA-2050 is safe and has a half-life similar to other recombinant human IgG1 antibodies. These results supported a successful investigational new drug application for GIGA-2050. This study demonstrates that a new class of drugs, recombinant hyperimmune globulins, can be manufactured consistently at the clinical scale and presents a new approach to treating infectious diseases that targets multiple epitopes of a virus.

3.
Nat Biotechnol ; 39(8): 989-999, 2021 08.
Article in English | MEDLINE | ID: mdl-33859400

ABSTRACT

Plasma-derived polyclonal antibody therapeutics, such as intravenous immunoglobulin, have multiple drawbacks, including low potency, impurities, insufficient supply and batch-to-batch variation. Here we describe a microfluidics and molecular genomics strategy for capturing diverse mammalian antibody repertoires to create recombinant multivalent hyperimmune globulins. Our method generates of diverse mixtures of thousands of recombinant antibodies, enriched for specificity and activity against therapeutic targets. Each hyperimmune globulin product comprised thousands to tens of thousands of antibodies derived from convalescent or vaccinated human donors or from immunized mice. Using this approach, we generated hyperimmune globulins with potent neutralizing activity against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in under 3 months, Fc-engineered hyperimmune globulins specific for Zika virus that lacked antibody-dependent enhancement of disease, and hyperimmune globulins specific for lung pathogens present in patients with primary immune deficiency. To address the limitations of rabbit-derived anti-thymocyte globulin, we generated a recombinant human version and demonstrated its efficacy in mice against graft-versus-host disease.


Subject(s)
B-Lymphocytes/immunology , COVID-19/therapy , Globulins/biosynthesis , SARS-CoV-2/immunology , Animals , Antibodies, Viral/immunology , CHO Cells , Cricetulus , Enzyme-Linked Immunosorbent Assay , Globulins/immunology , Humans , Immunization, Passive , Mice , Recombinant Proteins/biosynthesis , Recombinant Proteins/immunology , Zika Virus/immunology , COVID-19 Serotherapy
4.
MAbs ; 12(1): 1803646, 2020.
Article in English | MEDLINE | ID: mdl-32744131

ABSTRACT

IN VITRO: affinity maturation of therapeutic monoclonal antibodies is commonly applied to achieve desired properties, such as improved binding kinetics and affinity. Currently there are no universally accepted protocols for generation of variegated antibody libraries or selection thereof. Here, we performed affinity maturation using a yeast-based single-chain variable fragment (scFv) expression system to compare two mutagenesis methods: random mutagenesis across the entire V(D)J region by error-prone PCR, and a novel combinatorial mutagenesis process limited to the complementarity-determining regions (CDRs). We applied both methods of mutagenesis to four human antibodies against well-known immuno-oncology target proteins. Detailed sequence analysis showed an even mutational distribution across the entire length of the scFv for the error-prone PCR method and an almost exclusive targeting of the CDRs for the combinatorial method. Though there were distinct mutagenesis profiles for each target antibody and mutagenesis method, we found that both methods improved scFv affinity with similar efficiency. When a subset of the affinity-matured antibodies was expressed as full-length immunoglobulin, the measured affinity constants were mostly comparable to those of the respective scFv, but the full-length antibodies were inferior to their scFv counterparts for one of the targets. Furthermore, we found that improved affinity for the full-length antibody did not always translate into enhanced binding to cell-surface expressed antigen or improved immune checkpoint blocking ability, suggesting that screening with full-length antibody or antigen-binding fragment formats might be advantageous and the subject of a future study.


Subject(s)
Antibody Affinity/genetics , Mutagenesis , Single-Chain Antibodies , Complementarity Determining Regions/chemistry , Complementarity Determining Regions/genetics , Humans , Polymerase Chain Reaction , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/genetics
5.
J Biosci Bioeng ; 130(2): 149-158, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32414665

ABSTRACT

The hyperthermophilic archaeon Thermococcus kodakarensis can grow on pyruvate or maltooligosaccharides through H2 fermentation. H2 production levels of members of the Thermococcales are high, and studies to improve their production potential have been reported. Although H2 production is primary metabolism, here we aimed to partially uncouple cell growth and H2 production of T. kodakarensis. Additional A1-type ATPase genes were introduced into T. kodakarensis KU216 under the control of two promoters; the strong constitutive cell surface glycoprotein promoter, Pcsg, and the sugar-inducible fructose-1,6-bisphosphate aldolase promoter, Pfba. Whereas cells with the A1-type ATPase genes under the control of Pcsg displayed only trace levels of growth, cells with Pfba (strain KUA-PF) displayed growth sufficient for further analysis. Increased levels of A1-type ATPase protein were detected in KUA-PF cells grown on pyruvate or maltodextrin, when compared to the levels in the host strain KU216. The growth and H2 production levels of strain KUA-PF with pyruvate or maltodextrin as a carbon and electron source were analyzed and compared to those of the host strain KU216. Compared to a small decrease in total H2 production, significantly larger decreases in cell growth were observed, resulting in an increase in cell-specific H2 production. Quantification of the substrate also revealed that ATPase overexpression led to increased cell-specific pyruvate and maltodextrin consumptions. The results clearly indicate that ATPase production results in partial uncoupling of cell growth and H2 production in T. kodakarensis.


Subject(s)
Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Gene Expression Regulation, Archaeal , Hydrogen/metabolism , Thermococcus/enzymology , Thermococcus/genetics , Carbon/metabolism , Gene Dosage/physiology , Gene Expression Regulation, Archaeal/genetics , Organisms, Genetically Modified/metabolism , Polysaccharides/metabolism , Pyruvic Acid/metabolism
6.
Antibodies (Basel) ; 8(1)2019 Feb 19.
Article in English | MEDLINE | ID: mdl-31544823

ABSTRACT

To discover therapeutically relevant antibody candidates, many groups use mouse immunization followed by hybridoma generation or B cell screening. One modern approach is to screen B cells by generating natively paired single chain variable fragment (scFv) display libraries in yeast. Such methods typically rely on soluble antigens for scFv library screening. However, many therapeutically relevant cell-surface targets are difficult to express in a soluble protein format, complicating discovery. In this study, we developed methods to screen humanized mouse-derived yeast scFv libraries using recombinant OX40 protein in cell lysate. We used deep sequencing to compare screening with cell lysate to screening with soluble OX40 protein, in the context of mouse immunizations using either soluble OX40 or OX40-expressing cells and OX40-encoding DNA vector. We found that all tested methods produce a unique diversity of scFv binders. However, when we reformatted forty-one of these scFv as full-length monoclonal antibodies (mAbs), we observed that mAbs identified using soluble antigen immunization with cell lysate sorting always bound cell surface OX40, whereas other methods had significant false positive rates. Antibodies identified using soluble antigen immunization and cell lysate sorting were also significantly more likely to activate OX40 in a cellular assay. Our data suggest that sorting with OX40 protein in cell lysate is more likely than other methods to retain the epitopes required for antibody-mediated OX40 agonism.

7.
MAbs ; 11(5): 870-883, 2019 07.
Article in English | MEDLINE | ID: mdl-30898066

ABSTRACT

Immunization of mice followed by hybridoma or B-cell screening is one of the most common antibody discovery methods used to generate therapeutic monoclonal antibody (mAb) candidates. There are a multitude of different immunization protocols that can generate an immune response in animals. However, an extensive analysis of the antibody repertoires that these alternative immunization protocols can generate has not been performed. In this study, we immunized mice that transgenically express human antibodies with either programmed cell death 1 protein or cytotoxic T-lymphocyte associated protein 4 using four different immunization protocols, and then utilized a single cell microfluidic platform to generate tissue-specific, natively paired immunoglobulin (Ig) repertoires from each method and enriched for target-specific binders using yeast single-chain variable fragment (scFv) display. We deep sequenced the scFv repertoires from both the pre-sort and post-sort libraries. All methods and both targets yielded similar oligoclonality, variable (V) and joining (J) gene usage, and divergence from germline of enriched libraries. However, there were differences between targets and/or immunization protocols for overall clonal counts, complementarity-determining region 3 (CDR3) length, and antibody/CDR3 sequence diversity. Our data suggest that, although different immunization protocols may generate a response to an antigen, performing multiple immunization protocols in parallel can yield greater Ig diversity. We conclude that modern microfluidic methods, followed by an extensive molecular genomic analysis of antibody repertoires, can be used to quickly analyze new immunization protocols or mouse platforms.


Subject(s)
Antibodies, Monoclonal, Humanized/genetics , Antibody Diversity , Immunization/methods , Microfluidics/methods , Animals , Antibodies, Monoclonal, Humanized/immunology , B-Lymphocytes/immunology , CTLA-4 Antigen/immunology , Complementarity Determining Regions/genetics , Genomics/methods , High-Throughput Nucleotide Sequencing , Humans , Hybridomas , Mice , Mice, Transgenic , Peptide Library , Programmed Cell Death 1 Receptor/immunology , Single-Chain Antibodies/genetics , Single-Chain Antibodies/immunology
8.
Sci Rep ; 7(1): 16949, 2017 12 05.
Article in English | MEDLINE | ID: mdl-29209094

ABSTRACT

RecJ was originally identified in Escherichia coli and plays an important role in the DNA repair and recombination pathways. Thermococcus kodakarensis, a hyperthermophilic archaeon, has two RecJ-like nucleases. These proteins are designated as GAN (GINS-associated nuclease) and HAN (Hef-associated nuclease), based on the protein they interact with. GAN is probably a counterpart of Cdc45 in the eukaryotic CMG replicative helicase complex. HAN is considered mainly to function with Hef for restoration of the stalled replication fork. In this study, we characterized HAN to clarify its functions in Thermococcus cells. HAN showed single-strand specific 3' to 5' exonuclease activity, which was stimulated in the presence of Hef. A gene disruption analysis revealed that HAN was non-essential for viability, but the ΔganΔhan double mutant did not grow under optimal conditions at 85 °C. This deficiency was not fully recovered by introducing the mutant han gene, encoding the nuclease-deficient HAN protein, back into the genome. These results suggest that the unstable replicative helicase complex without GAN performs ineffective fork progression, and thus the stalled fork repair system including HAN becomes more important. The nuclease activity of HAN is required for the function of this protein in T. kodakarensis.


Subject(s)
Archaeal Proteins/metabolism , DNA Replication , Exodeoxyribonucleases/metabolism , Thermococcus/genetics , Archaeal Proteins/genetics , DNA Damage , DNA, Archaeal/genetics , DNA, Archaeal/metabolism , Escherichia coli Proteins/genetics , Exodeoxyribonucleases/genetics , Mutation , Phylogeny , Thermococcus/metabolism
9.
Nucleic Acids Res ; 45(18): 10693-10705, 2017 Oct 13.
Article in English | MEDLINE | ID: mdl-28977567

ABSTRACT

The archaeal minichromosome maintenance (MCM) has DNA helicase activity, which is stimulated by GINS in several archaea. In the eukaryotic replicative helicase complex, Cdc45 forms a complex with MCM and GINS, named as CMG (Cdc45-MCM-GINS). Cdc45 shares sequence similarity with bacterial RecJ. A Cdc45/RecJ-like protein from Thermococcus kodakarensis shows a bacterial RecJ-like exonuclease activity, which is stimulated by GINS in vitro. Therefore, this archaeal Cdc45/RecJ is designated as GAN, from GINS-associated nuclease. In this study, we identified the CMG-like complex in T. kodakarensis cells. The GAN·GINS complex stimulated the MCM helicase, but MCM did not affect the nuclease activity of GAN in vitro. The gene disruption analysis showed that GAN was non-essential for its viability but the Δgan mutant did not grow at 93°C. Furthermore, the Δgan mutant showed a clear retardation in growth as compared with the parent cells under optimal conditions at 85°C. These deficiencies were recovered by introducing the gan gene encoding the nuclease deficient GAN protein back to the genome. These results suggest that the replicative helicase complex without GAN may become unstable and ineffective in replication fork progression. The nuclease activity of GAN is not related to the growth defects of the Δgan mutant cells.


Subject(s)
Archaeal Proteins/metabolism , DNA Replication , Exodeoxyribonucleases/metabolism , Minichromosome Maintenance Complex Component 3/metabolism , Thermococcus/enzymology , Thermococcus/genetics , Archaeal Proteins/genetics , Exodeoxyribonucleases/genetics , Gene Deletion , Metals , Thermococcus/growth & development , Thermococcus/metabolism , Ultraviolet Rays
10.
Appl Environ Microbiol ; 83(15)2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28550062

ABSTRACT

Thermococcus kodakarensis is a hyperthermophilic archaeon that harbors a complete set of genes for chitin degradation to fructose 6-phosphate. However, wild-type T. kodakarensis KOD1 does not display growth on chitin. In this study, we developed a T. kodakarensis strain that can grow on chitin via genetic and adaptive engineering. First, a chitinase overproduction strain (KC01) was constructed by replacing the chitinase gene promoter with a strong promoter from the cell surface glycoprotein gene, resulting in increased degradation of swollen chitin and accumulation of N-,N'-diacetylchitobiose in the medium. To enhance N-,N'-diacetylchitobiose assimilation in KC01, genes encoding diacetylchitobiose deacetylase, exo-ß-d-glucosaminidase, and glucosamine-6-phosphate deaminase were also overexpressed to obtain strain KC04. To strengthen the glycolytic flux of KC04, the gene encoding Tgr (transcriptional repressor of glycolytic genes) was disrupted to obtain strain KC04Δt. In both KC04 and KC04Δt strains, degradation of swollen chitin was further enhanced. In the culture broth of these strains, the accumulation of glucosamine was observed. KC04Δt was repeatedly inoculated in a swollen-chitin-containing medium for 13 cultures. This adaptive engineering strategy resulted in the isolation of a strain (KC04ΔtM1) that showed almost complete degradation of 0.4% (wt/vol) swollen chitin after 90 h. The strain produced high levels of acetate and ammonium in the culture medium, and, moreover, molecular hydrogen was generated. This strongly suggests that strain KC04ΔtM1 has acquired the ability to convert chitin to fructose 6-phosphate via deacetylation and deamination and further convert fructose 6-phosphate to acetate via glycolysis coupled to hydrogen generation.IMPORTANCE Chitin is a linear homopolymer of ß-1,4-linked N-acetylglucosamine and is the second most abundant biomass next to cellulose. Compared to the wealth of research focused on the microbial degradation and conversion of cellulose, studies addressing microbial chitin utilization are still limited. In this study, using the hyperthermophilic archaeon Thermococcus kodakarensis as a host, we have constructed a strain that displays chitin-dependent hydrogen generation. The apparent hydrogen yield per unit of sugar consumed was slightly higher with swollen chitin than with starch. As gene manipulation in T. kodakarensis is relatively simple, the strain constructed in this study can also be used as a parent strain for the development and expansion of chitin-dependent biorefinery, in addition to its capacity to produce hydrogen.

11.
Extremophiles ; 21(1): 27-39, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27738851

ABSTRACT

The maturation of [NiFe]-hydrogenases requires a number of accessory proteins, which include hydrogenase-specific endopeptidases. The endopeptidases carry out the final cleavage reaction of the C-terminal regions of [NiFe]-hydrogenase large subunit precursors. The hyperthermophilic archaeon Thermococcus kodakarensis harbors two [NiFe]-hydrogenases, a cytoplasmic Hyh and a membrane-bound Mbh, along with two putative hydrogenase-specific endopeptidase genes. In this study, we carried out a genetic examination on the two endopeptidase genes, TK2004 and TK2066. Disruption of TK2004 resulted in a strain that could not grow under conditions requiring hydrogen evolution. The Mbh large subunit precursor (pre-MbhL) in this strain was not processed at all whereas Hyh cleavage was not affected. On the other hand, disruption of TK2066 did not affect the growth of T. kodakarensis under the conditions examined. Cleavage of the Hyh large subunit precursor (pre-HyhL) was impaired, but could be observed to some extent. In a strain lacking both TK2004 and TK2066, cleavage of pre-HyhL could not be observed. Our results indicate that pre-MbhL cleavage is carried out solely by the endopeptidase encoded by TK2004. Pre-HyhL cleavage is mainly carried out by TK2066, but TK2004 can also play a minor role in this cleavage.


Subject(s)
Archaeal Proteins/genetics , Endopeptidases/genetics , Hydrogenase/metabolism , Protein Processing, Post-Translational , Thermococcus/genetics , Archaeal Proteins/chemistry , Archaeal Proteins/metabolism , Endopeptidases/metabolism , Hydrogenase/chemistry , Hydrogenase/genetics , Protein Multimerization , Proteolysis , Thermococcus/enzymology
12.
Acta Crystallogr F Struct Biol Commun ; 72(Pt 6): 427-33, 2016 06.
Article in English | MEDLINE | ID: mdl-27303894

ABSTRACT

The TK2203 protein from the hyperthermophilic archaeon Thermococcus kodakarensis KOD1 (262 residues, 29 kDa) is a putative extradiol dioxygenase catalyzing the cleavage of C-C bonds in catechol derivatives. It contains three metal-binding residues, but has no significant sequence similarity to proteins for which structures have been determined. Here, the first crystal structure of the TK2203 protein was determined at 1.41 Šresolution to investigate its functional role. Structure analysis reveals that this protein shares the same fold and catalytic residues as other extradiol dioxygenases, strongly suggesting the same enzymatic activity. Furthermore, the important region contributing to substrate selectivity is discussed.


Subject(s)
Oxygenases/chemistry , Thermococcus/chemistry , Amino Acid Sequence , Crystallography, X-Ray , Protein Conformation
13.
Front Microbiol ; 6: 847, 2015.
Article in English | MEDLINE | ID: mdl-26379632

ABSTRACT

The hyperthermophilic archaeon Thermococcus kodakarensis can utilize sugars or pyruvate for growth. In the absence of elemental sulfur, the electrons via oxidation of these substrates are accepted by protons, generating molecular hydrogen (H2). The hydrogenase responsible for this reaction is a membrane-bound [NiFe]-hydrogenase (Mbh). In this study, we have examined several possibilities to increase the protein levels of Mbh in T. kodakarensis by genetic engineering. Highest levels of intracellular Mbh levels were achieved when the promoter of the entire mbh operon (TK2080-TK2093) was exchanged to a strong constitutive promoter from the glutamate dehydrogenase gene (TK1431) (strain MHG1). When MHG1 was cultivated under continuous culture conditions using pyruvate-based medium, a nearly 25% higher specific hydrogen production rate (SHPR) of 35.3 mmol H2 g-dcw(-1) h(-1) was observed at a dilution rate of 0.31 h(-1). We also combined mbh overexpression using an even stronger constitutive promoter from the cell surface glycoprotein gene (TK0895) with disruption of the genes encoding the cytosolic hydrogenase (Hyh) and an alanine aminotransferase (AlaAT), both of which are involved in hydrogen consumption (strain MAH1). At a dilution rate of 0.30 h(-1), the SHPR was 36.2 mmol H2 g-dcw(-1) h(-1), corresponding to a 28% increase compared to that of the host T. kodakarensis strain. Increasing the dilution rate to 0.83 h(-1) or 1.07 h(-1) resulted in a SHPR of 120 mmol H2 g-dcw(-1) h(-1), which is one of the highest production rates observed in microbial fermentation.

14.
J Appl Crystallogr ; 48(Pt 4): 1335-1341, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26306094

ABSTRACT

This work presents Xtal-xplore-R, a tool dedicated to the visualization of two-dimensional cuts through the multidimensional crystallographic residual function. It imports arbitrary crystal structures, generates artificial diffraction data, and calculates and investigates the residual function in parameter space. The program serves two major purposes. Firstly, it is part of a more general project dealing with structure determination via global optimization techniques. In this context, the tool is being used to systematically analyse characteristic universal features of the target function (residual function) which can be used to develop appropriate problem-specific heuristic optimization algorithms. Secondly, Xtal-xplore-R is intended as a didactic tool to visualize how changes in atom parameters affect the residual function and can be used to demonstrate manual structure optimization for simple crystal structures.

15.
Nature ; 475(7356): 348-52, 2011 Jul 20.
Article in English | MEDLINE | ID: mdl-21776081

ABSTRACT

The seminal importance of DNA sequencing to the life sciences, biotechnology and medicine has driven the search for more scalable and lower-cost solutions. Here we describe a DNA sequencing technology in which scalable, low-cost semiconductor manufacturing techniques are used to make an integrated circuit able to directly perform non-optical DNA sequencing of genomes. Sequence data are obtained by directly sensing the ions produced by template-directed DNA polymerase synthesis using all-natural nucleotides on this massively parallel semiconductor-sensing device or ion chip. The ion chip contains ion-sensitive, field-effect transistor-based sensors in perfect register with 1.2 million wells, which provide confinement and allow parallel, simultaneous detection of independent sequencing reactions. Use of the most widely used technology for constructing integrated circuits, the complementary metal-oxide semiconductor (CMOS) process, allows for low-cost, large-scale production and scaling of the device to higher densities and larger array sizes. We show the performance of the system by sequencing three bacterial genomes, its robustness and scalability by producing ion chips with up to 10 times as many sensors and sequencing a human genome.


Subject(s)
Genome, Bacterial/genetics , Genome, Human/genetics , Genomics/instrumentation , Genomics/methods , Semiconductors , Sequence Analysis, DNA/instrumentation , Sequence Analysis, DNA/methods , Escherichia coli/genetics , Humans , Light , Male , Rhodopseudomonas/genetics , Vibrio/genetics
16.
J Infect Dis ; 199(5): 693-701, 2009 Mar 01.
Article in English | MEDLINE | ID: mdl-19210162

ABSTRACT

BACKGROUND: Minor (i.e., <20% prevalence) drug-resistant human immunodeficiency virus (HIV) variants may go undetected, yet be clinically important. OBJECTIVES: To compare the prevalence of drug-resistant variants detected with standard and ultra-deep sequencing (detection down to 1% prevalence) and to determine the impact of minor resistant variants on virologic failure (VF). METHODS: The Flexible Initial Retrovirus Suppressive Therapies (FIRST) Study (N = 1397) compared 3 initial antiretroviral therapy (ART) strategies. A random subset (n = 491) had baseline testing for drug-resistance mutations performed by use of standard sequencing methods. Ultra-deep sequencing was performed on samples that had sufficient viral content (N = 264). Proportional hazards models were used to compare rates of VF for those who did and did not have mutations identified. RESULTS: Mutations were detected by standard and ultra-deep sequencing (in 14% and 28% of participants, respectively; P < .001). Among individuals who initiated treatment with an ART regimen that combined nucleoside and nonnucleoside reverse-transcriptase inhibitors (hereafter, "NNRTI strategy"), all individuals who had an NNRTI-resistance mutation identified by ultra-deep sequencing experienced VF. When these individuals were compared with individuals who initiated treatment with the NNRTI strategy but who had no NNRTI-resistance mutations, the risk of VF was higher for those who had an NNRTI-resistance mutation detected by both methods (hazard ratio [HR], 12.40 [95% confidence interval {CI}, 3.41-45.10]) and those who had mutation(s) detected only with ultra-deep sequencing (HR, 2.50 [95% CI, 1.17-5.36]). CONCLUSIONS: Ultra-deep sequencing identified a significantly larger proportion of HIV-infected, treatment-naive persons as harboring drug-resistant viral variants. Among participants who initiated treatment with the NNRTI strategy, the risk of VF was significantly greater for participants who had low- and high-prevalence NNRTI-resistant variants.


Subject(s)
Anti-HIV Agents/therapeutic use , Drug Resistance, Viral , HIV Infections/drug therapy , HIV Infections/virology , HIV-1/drug effects , Adult , Chronic Disease , DNA, Complementary/chemistry , Disease Progression , Female , Genetic Variation , HIV-1/genetics , Humans , Male , Mutation , RNA, Viral/genetics
17.
Genes Chromosomes Cancer ; 47(7): 633-8, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18418848

ABSTRACT

Gene amplification is among the most common genetic abnormalities that cause cancer. One of the most clinically important gene amplifications in human cancer causes extensive reduplication of ERBB2. A variety of cancers also occasionally harbor somatic mutations in ERBB2. Gene amplification and activating mutations both have predictive value for clinical response to targeted inhibitors. Since the number of gene copies in an amplicon may exceed 100, and since amplicons may encompass multiple genes, high-resolution analysis of gene amplifications poses considerable technical challenges. We have overcome this obstacle by using emulsion-based resequencing to determine the sequence of many independently-amplified individual DNA molecules in parallel. We used this high throughput sequencing technology to analyze ERBB2 mutational status in five ERBB2 amplified cell lines (four breast, one ovarian) and two breast tumors. Genomic DNA was isolated and the 28 exons of ERBB2 were independently amplified. Amplicons were then pooled at equimolar ratios, subjected to emulsion PCR (emPCR) and finally to picotiter plate pyrosequencing. High-quality sequence data were obtained for all amplicons analyzed and no activating mutations within ERBB2 were identified. Although we did not find activating mutations within the multiple copies of ERBB2 in these samples, the results establish the utility of this technology as a feasible and cost-effective approach for high resolution analysis of amplified genes.


Subject(s)
Breast Neoplasms/genetics , Gene Amplification , Mutation/genetics , Receptor, ErbB-2/genetics , Breast Neoplasms/metabolism , DNA Mutational Analysis , DNA, Neoplasm/genetics , DNA, Neoplasm/metabolism , Female , Gene Expression Regulation, Neoplastic , Humans , Immunoprecipitation , Mutagenesis, Site-Directed , Open Reading Frames , Polymerase Chain Reaction , Receptor, ErbB-2/metabolism , Sequence Analysis, DNA , Transfection , Tumor Cells, Cultured
18.
N Engl J Med ; 358(10): 991-8, 2008 Mar 06.
Article in English | MEDLINE | ID: mdl-18256387

ABSTRACT

BACKGROUND: Three patients who received visceral-organ transplants from a single donor on the same day died of a febrile illness 4 to 6 weeks after transplantation. Culture, polymerase-chain-reaction (PCR) and serologic assays, and oligonucleotide microarray analysis for a wide range of infectious agents were not informative. METHODS: We evaluated RNA obtained from the liver and kidney transplant recipients. Unbiased high-throughput sequencing was used to identify microbial sequences not found by means of other methods. The specificity of sequences for a new candidate pathogen was confirmed by means of culture and by means of PCR, immunohistochemical, and serologic analyses. RESULTS: High-throughput sequencing yielded 103,632 sequences, of which 14 represented an Old World arenavirus. Additional sequence analysis showed that this new arenavirus was related to lymphocytic choriomeningitis viruses. Specific PCR assays based on a unique sequence confirmed the presence of the virus in the kidneys, liver, blood, and cerebrospinal fluid of the recipients. Immunohistochemical analysis revealed arenavirus antigen in the liver and kidney transplants in the recipients. IgM and IgG antiviral antibodies were detected in the serum of the donor. Seroconversion was evident in serum specimens obtained from one recipient at two time points. CONCLUSIONS: Unbiased high-throughput sequencing is a powerful tool for the discovery of pathogens. The use of this method during an outbreak of disease facilitated the identification of a new arenavirus transmitted through solid-organ transplantation.


Subject(s)
Arenaviridae Infections/virology , Arenavirus/classification , Kidney Transplantation/adverse effects , Liver Transplantation/adverse effects , Sequence Analysis, DNA/methods , Adult , Antibodies, Viral/blood , Arenaviridae Infections/transmission , Arenavirus/genetics , Arenavirus/isolation & purification , Computational Biology , Disease Transmission, Infectious , Female , Humans , Immunohistochemistry , Kidney/ultrastructure , Kidney/virology , Middle Aged , Oligonucleotide Array Sequence Analysis , Polymerase Chain Reaction/methods , RNA, Viral/analysis
19.
Science ; 318(5848): 283-7, 2007 Oct 12.
Article in English | MEDLINE | ID: mdl-17823314

ABSTRACT

In colony collapse disorder (CCD), honey bee colonies inexplicably lose their workers. CCD has resulted in a loss of 50 to 90% of colonies in beekeeping operations across the United States. The observation that irradiated combs from affected colonies can be repopulated with naive bees suggests that infection may contribute to CCD. We used an unbiased metagenomic approach to survey microflora in CCD hives, normal hives, and imported royal jelly. Candidate pathogens were screened for significance of association with CCD by the examination of samples collected from several sites over a period of 3 years. One organism, Israeli acute paralysis virus of bees, was strongly correlated with CCD.


Subject(s)
Bacteria/isolation & purification , Bees/microbiology , Bees/virology , Genomics , Insect Viruses/isolation & purification , Nosema/isolation & purification , Animals , Bacteria/classification , Bacteria/genetics , Bees/parasitology , Fatty Acids , Genes, rRNA , Insect Viruses/classification , Insect Viruses/genetics , Nosema/classification , Nosema/genetics , Phylogeny , RNA Viruses/classification , RNA Viruses/genetics , RNA Viruses/isolation & purification , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , RNA, Viral/analysis , RNA, Viral/genetics , Sequence Analysis, DNA , Trypanosomatina/classification , Trypanosomatina/genetics , Trypanosomatina/isolation & purification
20.
Science ; 318(5849): 420-6, 2007 Oct 19.
Article in English | MEDLINE | ID: mdl-17901297

ABSTRACT

Structural variation of the genome involves kilobase- to megabase-sized deletions, duplications, insertions, inversions, and complex combinations of rearrangements. We introduce high-throughput and massive paired-end mapping (PEM), a large-scale genome-sequencing method to identify structural variants (SVs) approximately 3 kilobases (kb) or larger that combines the rescue and capture of paired ends of 3-kb fragments, massive 454 sequencing, and a computational approach to map DNA reads onto a reference genome. PEM was used to map SVs in an African and in a putatively European individual and identified shared and divergent SVs relative to the reference genome. Overall, we fine-mapped more than 1000 SVs and documented that the number of SVs among humans is much larger than initially hypothesized; many of the SVs potentially affect gene function. The breakpoint junction sequences of more than 200 SVs were determined with a novel pooling strategy and computational analysis. Our analysis provided insights into the mechanisms of SV formation in humans.


Subject(s)
Genetic Variation , Genome, Human , Mutation , Chromosome Inversion , Chromosome Mapping , Computational Biology , Female , Gene Fusion , Humans , Mutagenesis, Insertional , Oligonucleotide Array Sequence Analysis , Recombination, Genetic , Repetitive Sequences, Nucleic Acid , Retroelements , Sequence Analysis, DNA , Sequence Deletion
SELECTION OF CITATIONS
SEARCH DETAIL
...