Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
Add more filters










Publication year range
1.
Transl Stroke Res ; 10(5): 546-556, 2019 10.
Article in English | MEDLINE | ID: mdl-30465328

ABSTRACT

Ischemic stroke is a devastating neurological disease that can cause permanent brain damage, but to date, few biomarkers are available to reliably assess the severity of injury during acute onset. In this study, quantitative proteomic analysis of ischemic mouse brain detected the increase in expression levels of clusterin (CLU) and cystatin C (CST3). Since CLU is a secretary protein, serum samples (n = 70) were obtained from acute ischemic stroke (AIS) patients within 24 h of stroke onset and together with 70 matched health controls. Analysis of CLU levels indicated significantly higher levels in AIS patients than healthy controls (14.91 ± 4.03 vs. 12.79 ± 2.22 ng/L; P = 0.0004). Analysis of serum CST3 also showed significant increase in AIS patients as compared with healthy controls (0.90 ± 0.19 vs. 0.84 ± 0.12 ng/L; P = 0.0064). The serum values of CLU were also positively correlated with the NIH Stroke Scale (NIHSS) scores, the time interval after stroke onset, as well as major stroke risk factors associated with lipid profile. These data demonstrate that elevated levels of serum CLU and CST3 are independently associated with AIS and may serve as peripheral biomarkers to aid clinical assessment of AIS and its severity. This pilot study thus contributes to progress toward preclinical proteomic screening by using animal models and allows translation of results from bench to bedside.


Subject(s)
Brain Ischemia/blood , Clusterin/blood , Stroke/blood , Aged , Animals , Biomarkers/blood , Brain Ischemia/complications , Cystatin C/blood , Female , Humans , Male , Middle Aged , Pilot Projects , Proteome/metabolism , Stroke/complications
2.
Behav Brain Res ; 347: 148-157, 2018 07 16.
Article in English | MEDLINE | ID: mdl-29526786

ABSTRACT

Explosive blast-induced mild traumatic brain injury (mTBI), a "signature wound" of recent military conflicts, commonly affects service members. While past blast injury studies have provided insights into TBI with moderate- to high-intensity explosions, the impact of primary low-intensity blast (LIB)-mediated pathobiology on neurological deficits requires further investigation. Our prior considerations of blast physics predicted ultrastructural injuries at nanoscale levels. Here, we provide quantitative data using a primary LIB injury murine model exposed to open field detonation of 350 g of high-energy explosive C4. We quantified ultrastructural and behavioral changes up to 30 days post blast injury (DPI). The use of an open-field experimental blast generated a primary blast wave with a peak overpressure of 6.76 PSI (46.6 kPa) at a 3-m distance from the center of the explosion, a positive phase duration of approximate 3.0 milliseconds (ms), a maximal impulse of 8.7 PSI × ms and a sharp rising time of 9 × 10-3 ms, with no apparent impact/acceleration in exposed animals. Neuropathologically, myelinated axonal damage was observed in blast-exposed groups at 7 DPI. Using transmission electron microscopy, we observed and quantified myelin sheath defects and mitochondrial abnormalities at 7 and 30 DPI. Inverse correlations between blast intensities and neurobehavioral outcomes including motor activities, anxiety levels, nesting behavior, spatial learning and memory occurred. These observations uncover unique ultrastructural brain abnormalities and associated behavioral changes due to primary blast injury and provide key insights into its pathogenesis and potential treatment.


Subject(s)
Blast Injuries/pathology , Brain Concussion/etiology , Brain Concussion/pathology , Brain/ultrastructure , Animals , Anxiety/etiology , Anxiety/pathology , Blast Injuries/psychology , Brain/pathology , Brain Concussion/psychology , Disease Models, Animal , Double-Blind Method , Exploratory Behavior , Immunohistochemistry , Male , Maze Learning , Mice, Inbred C57BL , Microscopy, Electron, Transmission , Mitochondria/ultrastructure , Motor Activity , Myelin Sheath/ultrastructure , Nesting Behavior , Random Allocation , Recognition, Psychology , Reversal Learning , Spatial Memory
3.
Brain Inj ; 32(3): 342-349, 2018.
Article in English | MEDLINE | ID: mdl-29333886

ABSTRACT

OBJECTIVE: To determine early effects on outcome from traumatic brain injury (TBI) induced by controlled cortical impact (CCI) associated with anaemia in mice. HYPOTHESIS: Outcome from TBI with concomitant anaemia would be worse than TBI without anaemia. METHODS: CCI was induced with electromagnetic impaction in four groups of C57BL/6J mice: sham, sham+anaemia; TBI; and TBI+anaemia. Anaemia was created by withdrawal of 30% of calculated intravascular blood volume and saline replacement of equal volume. Functional outcome was assessed by beam-walking test and open field test (after pre-injury training) on post-injury days 3 and 7. After functional assessment, brains removed from sacrificed animals were pathological reviewed with haematoxylin and eosin, cresyl violet, Luxol Fast Blue, and IBA-1 immunostains. RESULTS: Beam-walking was similar between animals with TBI and TBI+anaemia (p = 0.9). In open field test, animals with TBI+anaemia walked less distance than TBI alone or sham animals on days 3 (p < 0.001) and 7 (p < 0.05), indicating less exploratory and locomotion behaviours. No specific pathologic differences could be identified. CONCLUSIONS: Anaemia associated with TBI from CCI is associated with worse outcome as measured by less distance travelled in the open field test at three days than if anaemia is not present.


Subject(s)
Anemia/etiology , Brain Injuries, Traumatic/complications , Anemia/pathology , Animals , Brain/metabolism , Brain/pathology , Calcium-Binding Proteins/metabolism , Disease Models, Animal , Disease Progression , Exploratory Behavior/physiology , Male , Mice , Mice, Inbred C57BL , Microfilament Proteins/metabolism , Outcome Assessment, Health Care , Psychomotor Disorders/diagnosis , Psychomotor Disorders/etiology , Statistics, Nonparametric
4.
Article in English | MEDLINE | ID: mdl-28314621

ABSTRACT

Docosahexaenoic acid (DHA), a polyunsaturated fatty acid (PUFA) enriched in phospholipids in the brain and retina, is known to play multi-functional roles in brain health and diseases. While arachidonic acid (AA) is released from membrane phospholipids by cytosolic phospholipase A2 (cPLA2), DHA is linked to action of the Ca2+-independent iPLA2. DHA undergoes enzymatic conversion by 15-lipoxygenase (Alox 15) to form oxylipins including resolvins and neuroprotectins, which are powerful lipid mediators. DHA can also undergo non-enzymatic conversion by reacting with oxygen free radicals (ROS), which cause the production of 4-hydoxyhexenal (4-HHE), an aldehyde derivative which can form adducts with DNA, proteins and lipids. In studies with both animal models and humans, there is evidence that inadequate intake of maternal n-3 PUFA may lead to aberrant development and function of the central nervous system (CNS). What is less certain is whether consumption of n-3 PUFA is important in maintaining brain health throughout one's life span. Evidence mostly from non-human studies suggests that DHA intake above normal nutritional requirements might modify the risk/course of a number of diseases of the brain. This concept has fueled much of the present interest in DHA research, in particular, in attempts to delineate mechanisms whereby DHA may serve as a nutraceutical and confer neuroprotective effects. Current studies have revealed ability for the oxylipins to regulation of cell redox homeostasis through the Nuclear factor (erythroid-derived 2)-like 2/Antioxidant response element (Nrf2/ARE) anti-oxidant pathway, and impact signaling pathways associated with neurotransmitters, and modulation of neuronal functions involving brain-derived neurotropic factor (BDNF). This review is aimed at describing recent studies elaborating these mechanisms with special regard to aging and Alzheimer's disease, autism spectrum disorder, schizophrenia, traumatic brain injury, and stroke.


Subject(s)
Aging/metabolism , Brain/metabolism , Docosahexaenoic Acids/metabolism , Animals , Dietary Supplements , Docosahexaenoic Acids/therapeutic use , Group VI Phospholipases A2/metabolism , Humans , Mental Disorders/diet therapy , Mental Disorders/metabolism , Neuroprotective Agents/metabolism
5.
Behav Brain Res ; 340: 147-158, 2018 03 15.
Article in English | MEDLINE | ID: mdl-27555538

ABSTRACT

Blast exposures are associated with traumatic brain injury (TBI) and blast-induced TBIs are common injuries affecting military personnel. Department of Defense and Veterans Administration (DoD/VA) reports for TBI indicated that the vast majority (82.3%) has been mild TBI (mTBI)/concussion. mTBI and associated posttraumatic stress disorders (PTSD) have been called "the invisible injury" of the current conflicts in Iraq and Afghanistan. These injuries induce varying degrees of neuropathological alterations and, in some cases, chronic cognitive, behavioral and neurological disorders. Appropriate animal models of blast-induced TBI will not only assist the understanding of physical characteristics of the blast, but also help to address the potential mechanisms. This report provides a brief overview of physical principles of blast, injury mechanisms related to blast exposure, current blast animal models, and the neurological behavioral and neuropathological findings related to blast injury in experimental settings. We describe relationships between blast peak pressures and the observed injuries. We also report preliminary use of a highly reproducible and intensity-graded blast murine model carried out in open-field with explosives, and describe physical and pathological findings in this experimental model. Our results indicate close relationships between blast intensities and neuropathology and behavioral deficits, particularly at low level blast intensities relevant to mTBI.


Subject(s)
Blast Injuries/physiopathology , Brain Concussion/etiology , Brain Concussion/physiopathology , Animals , Biomechanical Phenomena , Blast Injuries/therapy , Brain Concussion/therapy , Disease Models, Animal , Humans , Mice , War-Related Injuries/physiopathology , War-Related Injuries/therapy
6.
PLoS One ; 12(2): e0170346, 2017.
Article in English | MEDLINE | ID: mdl-28170408

ABSTRACT

Occludin is a key tight junction (TJ) protein in cerebral endothelial cells (CECs) playing an important role in modulating blood-brain barrier (BBB) functions. This protein (65kDa) has been shown to engage in many signaling pathways and phosphorylation by both tyrosine and threonine kinases. Despite yet unknown mechanisms, pro-inflammatory cytokines and endotoxin (lipopolysaccharides, LPS) may alter TJ proteins in CECs and BBB functions. Here we demonstrate the responses of occludin in an immortalized human cerebral endothelial cell line (hCMEC/D3) to stimulation by TNFα (10 ng/mL), IL-1ß (10 ng/mL) and LPS (100 ng/mL). Exposing cells to TNFα resulted in a rapid and transient upward band-shift of occludin, suggesting of an increase in phosphorylation. Exposure to IL-1ß produced significantly smaller effects and LPS produced almost no effects on occludin band-shift. TNFα also caused transient stimulation of p38MAPK and ERK1/2 in hCMEC/D3 cells, and the occludin band-shift induced by TNFα was suppressed by SB202190, an inhibitor for p38MAPK, and partly by U0126, the MEK1/2-ERK1/2 inhibitor. Cells treated with TNFα and IL-1ß but not LPS for 24 h resulted in a significant (p < 0.001) decrease in the expression of occludin, and the decrease could be partially blocked by SB202190, the inhibitor for p38MAPK. Treatment with TNFα also altered cell morphology and enhanced permeability of the CEC layer as measured by the FITC-dextran assay and the trans-endothelial electrical resistances (TEER). However, treatment with SB202190 alone could not effectively reverse the TNFα -induced morphology changes or the enhanced permeability changes. These results suggest that despite effects of TNFα on p38MAPK-mediated occludin phosphorylation and expression, these changes are not sufficient to avert the TNFα-induced alterations on cell morphology and permeability.


Subject(s)
Cerebral Cortex/metabolism , Endothelial Cells/metabolism , Occludin/metabolism , Tumor Necrosis Factor-alpha/metabolism , Blood-Brain Barrier/metabolism , Cell Line , Cell Survival/drug effects , Electrophysiological Phenomena , Gene Expression , Humans , Interleukin-1beta/metabolism , Interleukin-1beta/pharmacology , Lipopolysaccharides/immunology , MAP Kinase Signaling System/drug effects , Occludin/genetics , Permeability , Phosphorylation , Signal Transduction/drug effects , Tight Junctions/metabolism , Tumor Necrosis Factor-alpha/pharmacology , p38 Mitogen-Activated Protein Kinases/metabolism
7.
Neuromolecular Med ; 18(3): 415-25, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27339657

ABSTRACT

Microglia play a significant role in the generation and propagation of oxidative/nitrosative stress, and are the basis of neuroinflammatory responses in the central nervous system. Upon stimulation by endotoxins such as lipopolysaccharides (LPS), these cells release pro-inflammatory factors which can exert harmful effects on surrounding neurons, leading to secondary neuronal damage and cell death. Our previous studies demonstrated the effects of botanical polyphenols to mitigate inflammatory responses induced by LPS, and highlighted an important role for cytosolic phospholipase A2 (cPLA2) upstream of the pro-inflammatory pathways (Chuang et al. in J Neuroinflammation 12(1):199, 2015. doi: 10.1186/s12974-015-0419-0 ). In this study, we investigate the action of botanical compounds and assess whether suppression of cPLA2 in microglia is involved in the neurotoxic effects on neurons. Differentiated SH-SY5Y neuroblastoma cells were used to test the neurotoxicity of conditioned medium from stimulated microglial cells, and WST-1 assay was used to assess for the cell viability of SH-SY5Y cells. Botanicals such as quercetin and honokiol (but not cyanidin-3-O-glucoside, 3CG) were effective in inhibiting LPS-induced nitric oxide (NO) production and phosphorylation of cPLA2. Conditioned medium from BV-2 cells stimulated with LPS or IFNγ caused neurotoxicity to SH-SY5Y cells. Decrease in cell viability could be ameliorated by pharmacological inhibitors for cPLA2 as well as by down-regulating cPLA2 with siRNA. Botanicals effective in inhibition of LPS-induced NO and cPLA2 phosphorylation were also effective in ameliorating microglial-induced neurotoxicity. Results demonstrated cytotoxic factors from activated microglial cells to cause damaging effects to neurons and potential use of botanical polyphenols to ameliorate the neurotoxic effects.


Subject(s)
Microglia/drug effects , Phospholipases A2/metabolism , Plant Extracts/pharmacology , Polyphenols/pharmacology , Cell Line, Tumor , Humans , Lipopolysaccharides , Macrophage Activation/drug effects
8.
Neurochem Int ; 97: 49-56, 2016 07.
Article in English | MEDLINE | ID: mdl-27166148

ABSTRACT

The increase in oxidative stress and inflammatory responses associated with neurodegenerative diseases has drawn considerable attention towards understanding the transcriptional signaling pathways involving NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) and Nrf2 (Nuclear Factor Erythroid 2-like 2). Our recent studies with immortalized murine microglial cells (BV-2) demonstrated effects of botanical polyphenols to inhibit lipopolysaccharide (LPS)-induced nitric oxide (NO) and enhance Nrf2-mediated antioxidant responses (Sun et al., 2015). In this study, an immortalized rat astrocyte (DI TNC1) cell line expressing a luciferase reporter driven by the NF-κB or the Nrf2/Antioxidant Response Element (ARE) promoter was used to assess regulation of these two pathways by phytochemicals such as quercetin, rutin, cyanidin, cyanidin-3-O-glucoside, as well as botanical extracts from Withania somnifera (Ashwagandha), Sutherlandia frutescens (Sutherlandia) and Euterpe oleracea (Açaí). Quercetin effectively inhibited LPS-induced NF-κB reporter activity and stimulated Nrf2/ARE reporter activity in DI TNC1 astrocytes. Cyanidin and the glycosides showed similar effects but only at much higher concentrations. All three botanical extracts effectively inhibited LPS-induced NF-κB reporter activity. These extracts were capable of enhancing ARE activity by themselves and further enhanced ARE activity in the presence of LPS. Quercetin and botanical extracts induced Nrf2 and HO-1 protein expression. Interestingly, Ashwagandha extract was more active in inducing Nrf2 and HO-1 expression in DI TNC1 astrocytes as compared to Sutherlandia and Açaí extracts. In summary, this study demonstrated NF-kB and Nrf2/ARE promoter activities in DI TNC1 astrocytes, and further showed differences in ability for specific botanical polyphenols and extracts to down-regulate LPS-induced NF-kB and up-regulate the NRF2/ARE activities in these cells.


Subject(s)
Antioxidant Response Elements/physiology , Astrocytes/metabolism , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Animals , Antioxidant Response Elements/drug effects , Astrocytes/drug effects , Cell Line, Transformed , Cells, Cultured , Phytochemicals/isolation & purification , Plant Extracts/isolation & purification , Rats
9.
Neuromolecular Med ; 18(3): 241-52, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27209361

ABSTRACT

Withania somnifera (L.) Dunal, commonly known as Ashwagandha, has been used in Ayurvedic medicine for promoting health and quality of life. Recent clinical trials together with experimental studies indicated significant neuroprotective effects of Ashwagandha and its constituents. This study is aimed to investigate anti-inflammatory and anti-oxidative properties of this botanical and its two withanolide constituents, namely, Withaferin A and Withanolide A, using the murine immortalized BV-2 microglial cells. Ashwagandha extracts not only effectively inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO) and reactive oxygen species (ROS) production in BV-2 cells, but also stimulates the Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway, leading to induction of heme oxygenase-1 (HO-1), both in the presence and absence of LPS. Although the withanolides were also capable of inhibiting LPS-induced NO production and stimulating Nrf2/HO-1 pathway, Withaferin A was tenfold more effective than Withanolide A. In serum-free culture, LPS can also induce production of long thin processes (filopodia) between 4 and 8 h in BV-2 cells. This morphological change was significantly suppressed by Ashwagandha and both withanolides at concentrations for suppressing LPS-induced NO production. Taken together, these results suggest an immunomodulatory role for Ashwagandha and its withanolides, and their ability to suppress oxidative and inflammatory responses in microglial cells by simultaneously down-regulating the NF-kB and upregulating the Nrf2 pathways.


Subject(s)
Gene Expression Regulation/drug effects , Microglia/drug effects , Withania/chemistry , Withanolides/pharmacology , Animals , Cell Line , Immunologic Factors/pharmacology , Mice , NF-E2-Related Factor 2/genetics , NF-kappa B/genetics , Neuroprotective Agents/pharmacology , Oxidative Stress/drug effects , Plant Extracts/pharmacology
10.
J Neuroinflammation ; 12: 199, 2015 Oct 31.
Article in English | MEDLINE | ID: mdl-26520095

ABSTRACT

BACKGROUND: Oxidative stress and inflammation are important factors contributing to the pathophysiology of numerous neurological disorders, including Alzheimer's disease, Parkinson's disease, acute stroke, and infections of the brain. There is well-established evidence that proinflammatory cytokines and glutamate, as well as reactive oxygen species (ROS) and nitric oxide (NO), are produced upon microglia activation, and these are important factors contributing to inflammatory responses and cytotoxic damage to surrounding neurons and neighboring cells. Microglial cells express relatively high levels of cytosolic phospholipase A2 (cPLA2), an enzyme known to regulate membrane phospholipid homeostasis and release of arachidonic acid (AA) for synthesis of eicosanoids. The goal for this study is to elucidate the role of cPLA2IV in mediating the oxidative and inflammatory responses in microglial cells. METHODS: Experiments involved primary microglia cells isolated from transgenic mice deficient in cPLA2α or iPLA2ß, as well as murine immortalized BV-2 microglial cells. Inhibitors of cPLA2/iPLA2/cyclooxygenase (COX)/lipoxygenase (LOX) were used in BV-2 microglial cell line. siRNA transfection was employed to knockdown cPLA2 expression in BV-2 cells. Griess reaction protocol was used to determine NO concentration, and CM-H2DCF-DA was used to detect ROS production in primary microglia and BV-2 cells. WST-1 assay was used to assess cell viability. Western blotting was used to assess protein expression levels. Immunocytochemical staining for phalloidin against F-actin was used to demonstrate cell morphology. RESULTS: In both primary and BV-2 microglial cells, stimulation with lipopolysaccharide (LPS) or interferon gamma (IFNγ) resulted in a time-dependent increase in phosphorylation of cPLA2 together with ERK1/2. In BV-2 cells, LPS- and IFNγ-induced ROS and NO production was inhibited by arachidonyl trifluoromethyl ketone (AACOCF3) and pyrrophenone as well as RNA interference, but not BEL, suggesting a link between cPLA2, and not iPLA2, on LPS/IFNγ-induced nitrosative and oxidative stress in microglial cells. Primary microglial cells isolated from cPLA2α-deficient mice generated significantly less NO and ROS as compared with the wild-type mice. Microglia isolated from iPLA2ß-deficient mice did not show a decrease in LPS-induced NO and ROS production. LPS/IFNγ induced morphological changes in primary microglia, and these changes were mitigated by AACOCF3. Interestingly, despite that LPS and IFNγ induced an increase in phospho-cPLA2 and prostaglandin E2 (PGE2) release, LPS- and IFNγ-induced NO and ROS production were not altered by the COX-1/2 inhibitor but were suppressed by the LOX-12 and LOX-15 inhibitors instead. CONCLUSIONS: In summary, the results in this study demonstrated the role of cPLA2 in microglial activation with metabolic links to oxidative and inflammatory responses, and this was in part regulated by the AA metabolic pathways, namely the LOXs. Further studies with targeted inhibition of cPLA2/LOX in microglia during neuroinflammatory conditions can be valuable to investigate the therapeutic potential in ameliorating neurological disease pathology.


Subject(s)
Cytosol/enzymology , Lipoxygenase/metabolism , Microglia/enzymology , Nitric Oxide/metabolism , Phospholipases A2/metabolism , Reactive Oxygen Species/metabolism , Actins/metabolism , Animals , Cell Line , Female , Inflammation/enzymology , Inflammation/pathology , MAP Kinase Signaling System/drug effects , Macrophage Activation/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Microglia/drug effects , Phospholipases A2/genetics , Primary Cell Culture , Prostaglandin-Endoperoxide Synthases/physiology , Signal Transduction/drug effects
11.
PLoS One ; 10(10): e0141509, 2015.
Article in English | MEDLINE | ID: mdl-26505893

ABSTRACT

A large group of flavonoids found in fruits and vegetables have been suggested to elicit health benefits due mainly to their anti-oxidative and anti-inflammatory properties. Recent studies with immune cells have demonstrated inhibition of these inflammatory responses through down-regulation of the pro-inflammatory pathway involving NF-κB and up-regulation of the anti-oxidative pathway involving Nrf2. In the present study, the murine BV-2 microglial cells were used to compare anti-inflammatory activity of quercetin and cyanidin, two flavonoids differing by their alpha, beta keto carbonyl group. Quercetin was 10 folds more potent than cyanidin in inhibition of lipopolysaccharide (LPS)-induced NO production as well as stimulation of Nrf2-induced heme-oxygenase-1 (HO-1) protein expression. In addition, quercetin demonstrated enhanced ability to stimulate HO-1 protein expression when cells were treated with LPS. In an attempt to unveil mechanism(s) for quercetin to enhance Nrf2/HO-1 activity under endotoxic stress, results pointed to an increase in phospho-p38MAPK expression upon addition of quercetin to LPS. In addition, pharmacological inhibitors for phospho-p38MAPK and MEK1/2 for ERK1/2 further showed that these MAPKs target different sites of the Nrf2 pathway that regulates HO-1 expression. However, inhibition of LPS-induced NO by quercetin was not fully reversed by TinPPIX, a specific inhibitor for HO-1 activity. Taken together, results suggest an important role of quercetin to regulate inflammatory responses in microglial cells and its ability to upregulate HO-1 against endotoxic stress through involvement of MAPKs.


Subject(s)
Heme Oxygenase-1/biosynthesis , Inflammation/drug therapy , NF-E2-Related Factor 2/metabolism , Nitric Oxide/biosynthesis , Quercetin/administration & dosage , Animals , Gene Expression Regulation/drug effects , Heme Oxygenase-1/metabolism , Humans , Inflammation/chemically induced , Inflammation/metabolism , Inflammation/pathology , Lipopolysaccharides/toxicity , Macrophages/drug effects , Macrophages/metabolism , Mice , Microglia/drug effects , Microglia/metabolism , NF-E2-Related Factor 2/biosynthesis , NF-E2-Related Factor 2/genetics , NF-kappa B/metabolism , Nitric Oxide/metabolism , Signal Transduction/drug effects , p38 Mitogen-Activated Protein Kinases/genetics
12.
Life Sci ; 128: 30-8, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25744406

ABSTRACT

AIMS: Elderberry (Sambucus spp.) is one of the oldest medicinal plants noted for its cardiovascular, anti-inflammatory, and immune-stimulatory properties. In this study, we investigated the anti-inflammatory and anti-oxidant effects of the American elderberry (Sambucus nigra subsp. canadensis) pomace as well as some of the anthocyanins (cyanidin chloride and cyanidin 3-O-glucoside) and flavonols (quercetin and rutin) in bv-2 mouse microglial cells. MAIN METHODS: The bv-2 cells were pretreated with elderberry pomace (extracted with ethanol or ethyl acetate) or its anthocyanins and flavonols and stimulated by either lipopolysaccharide (LPS) or interferon-γ (IFNγ). Reactive oxygen species (ROS) and nitric oxide (NO) production (indicating oxidative stress and inflammatory response) were measured using the ROS detection reagent DCF-DA and the Griess reaction, respectively. KEY FINDINGS: Analysis of total monomeric anthocyanin (as cyanidin 3-O-glucoside equivalents) indicated five-fold higher amount in the freeze-dried ethanol extract as compared to that of the oven-dried extract; anthocyanin was not detected in the ethyl acetate extracts. Elderberry ethanol extracts (freeze-dried or oven-dried) showed higher anti-oxidant activities and better ability to inhibit LPS or IFNγ-induced NO production as compared with the ethyl acetate extracts. The phenolic compounds strongly inhibited LPS or IFNγ-induced ROS production, but except for quercetin, they were relatively poor in inhibiting NO production. SIGNIFICANCE: These results demonstrated differences in anti-oxidative and anti-inflammatory effects of elderberry extracts depending on solvents used. Results further identified quercetin as the most active component in suppressing oxidative stress and inflammatory responses on microglial cells.


Subject(s)
Microglia/drug effects , Phenols/pharmacology , Plant Extracts/pharmacology , Quercetin/pharmacology , Sambucus/chemistry , Animals , Anthocyanins/pharmacology , Cell Survival/drug effects , Cells, Cultured , Lipopolysaccharides/pharmacology , Mice , Microglia/immunology , Nitric Oxide/biosynthesis , Reactive Oxygen Species/metabolism
13.
J Alzheimers Dis ; 44(2): 561-72, 2015.
Article in English | MEDLINE | ID: mdl-25318545

ABSTRACT

Alzheimer's disease (AD) is a progressive, age-dependent neurodegenerative disorder affecting specific brain regions that control memory and cognitive functions. Epidemiological studies suggest that exercise and dietary antioxidants are beneficial in reducing AD risk. To date, botanical flavonoids are consistently associated with the prevention of age-related diseases. The present study investigated the effects of 4 months of wheel-running exercise, initiated at 2-months of age, in conjunction with the effects of the green tea catechin (-)-epigallocatechin-3-gallate (EGCG) administered orally in the drinking water (50 mg/kg daily) on: (1) behavioral measures: learning and memory performance in the Barnes maze, nest building, open-field, anxiety in the light-dark box; and (2) soluble amyloid-ß (Aß) levels in the cortex and hippocampus in TgCRND8 (Tg) mice. Untreated Tg mice showed hyperactivity, relatively poor nest building behaviors, and deficits in spatial learning in the Barnes maze. Both EGCG and voluntary exercise, separately and in combination, were able to attenuate nest building and Barnes maze performance deficits. Additionally, these interventions lowered soluble Aß1-42 levels in the cortex and hippocampus. These results, together with epidemiological and clinical studies in humans, suggest that dietary polyphenols and exercise may have beneficial effects on brain health and slow the progression of AD.


Subject(s)
Alzheimer Disease/drug therapy , Alzheimer Disease/physiopathology , Catechin/analogs & derivatives , Motor Activity/physiology , Nootropic Agents/pharmacology , Administration, Oral , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Anxiety/drug therapy , Anxiety/physiopathology , Catechin/pharmacology , Cerebral Cortex/drug effects , Cerebral Cortex/physiopathology , Disease Models, Animal , Drinking Water , Female , Hippocampus/drug effects , Hippocampus/physiopathology , Housing, Animal , Humans , Male , Maze Learning/drug effects , Maze Learning/physiology , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Transgenic , Peptide Fragments/metabolism
14.
ASN Neuro ; 6(6)2014.
Article in English | MEDLINE | ID: mdl-25324465

ABSTRACT

Sutherlandia (Sutherlandia frutescens) and elderberry (Sambucus spp.) are used to promote health and for treatment of a number of ailments. Although studies with cultured cells have demonstrated antioxidative and anti-inflammatory properties of these botanicals, little is known about their ability to mitigate brain injury. In this study, C57BL/6 J male mice were fed AIN93G diets without or with Sutherlandia or American elderberry for 2 months prior to a 30-min global cerebral ischemia induced by occlusion of the bilateral common carotid arteries (BCCAs), followed by reperfusion for 3 days. Accelerating rotarod assessment at 24 h after BCCA occlusion showed amelioration of sensorimotor impairment in the mice fed the supplemented diets as compared with the ischemic mice fed the control diet. Quantitative digital pathology assessment of brain slides stained with cresyl violet at 3 days after ischemia/reperfusion (I/R) revealed significant reduction in neuronal cell death in both dietary groups. Immunohistochemical staining for ionized calcium-binding adapter molecule-1 demonstrated pronounced activation of microglia in the hippocampus and striatum in the ischemic brains 3 days after I/R, and microglial activation was significantly reduced in animals fed supplemented diets. Mitigation of microglial activation by the supplements was further supported by the decrease in expression of p47phox, a cytosolic subunit of NADPH oxidase, and phospho-ERK1/2, a mitogen-activated protein kinase known to mediate a number of cytoplasmic processes including oxidative stress and neuroinflammatory responses. These results demonstrate neuroprotective effect of Sutherlandia and American elderberry botanicals against oxidative and inflammatory responses to cerebral I/R.


Subject(s)
Brain Ischemia/diet therapy , Gene Expression Regulation/drug effects , Microglia/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , NADPH Oxidases/metabolism , Neurons/drug effects , Neuroprotective Agents/therapeutic use , Perilla frutescens/chemistry , Sambucus/chemistry , Animals , Brain Ischemia/pathology , Disease Models, Animal , Hippocampus/pathology , Male , Mice , Mice, Inbred C57BL , Microglia/drug effects , Neurons/metabolism , Neurons/pathology , Phytotherapy , Plant Preparations
15.
PLoS One ; 9(2): e89748, 2014.
Article in English | MEDLINE | ID: mdl-24587007

ABSTRACT

Sutherlandia frutescens (L.) R.Br. (SF) is a medicinal plant indigenous to southern Africa and used in folk and contemporary remedies for stress, chronic diseases, cancer, and HIV/AIDS. While previous studies have focused on physiological effects of SF on cellular and systemic abnormalities associated with these diseases, little is known about its effects in the brain and immune cells in the central nervous system. Results of this study indicate that ethanol extracts of SF (SF-E) suppress NMDA-induced reactive oxygen species (ROS) production in neurons, and LPS- and IFNγ-induced ROS and nitric oxide (NO) production in microglial cells. SF-E's action on microglial cells appears to be mediated through inhibition of the IFNγ-induced p-ERK1/2 signaling pathway which is central to regulating a number of intracellular metabolic processes including enhancing STAT1α phosphorylation and filopodia formation. The involvement of SF in these pathways suggests the potential for novel therapeutics for stress and prevention, and/or treatment of HIV/AIDS as well as other inflammatory diseases in the brain.


Subject(s)
Fabaceae/chemistry , Inflammation/prevention & control , Microglia/drug effects , Neurons/drug effects , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Analysis of Variance , Animals , Blotting, Western , Cells, Cultured , Ethanol , MAP Kinase Signaling System/drug effects , Microglia/metabolism , Neurons/metabolism , Nitric Oxide/metabolism , Rats , Reactive Oxygen Species/metabolism
16.
Mol Neurobiol ; 50(1): 6-14, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24573693

ABSTRACT

Phospholipases A(2) (PLA(2)s) are important enzymes for the metabolism of fatty acids in membrane phospholipids. Among the three major classes of PLA(2)s in the mammalian system, the group IV calcium-dependent cytosolic PLA(2) alpha (cPLA(2)α) has received the most attention because it is widely expressed in nearly all mammalian cells and its active participation in cell metabolism. Besides Ca(2+) binding to its C2 domain, this enzyme can undergo a number of cell-specific post-translational modifications, including phosphorylation by protein kinases, S-nitrosylation through interaction with nitric oxide (NO), as well as interaction with other proteins and lipid molecules. Hydrolysis of phospholipids by cPLA(2) yields two important lipid mediators, arachidonic acid (AA) and lysophospholipids. While AA is known to serve as a substrate for cyclooxygenases and lipoxygenases, which are enzymes for the synthesis of eicosanoids and leukotrienes, lysophospholipids are known to possess detergent-like properties capable of altering microdomains of cell membranes. An important feature of cPLA(2) is its link to cell surface receptors that stimulate signaling pathways associated with activation of protein kinases and production of reactive oxygen species (ROS). In the central nervous system (CNS), cPLA(2) activation has been implicated in neuronal excitation, synaptic secretion, apoptosis, cell-cell interaction, cognitive and behavioral function, oxidative-nitrosative stress, and inflammatory responses that underline the pathogenesis of a number of neurodegenerative diseases. However, the types of extracellular agonists that target intracellular signaling pathways leading to cPLA(2) activation among different cell types and under different physiological and pathological conditions have not been investigated in detail. In this review, special emphasis is given to metabolic events linking cPLA(2) to activation in neurons, astrocytes, microglial cells, and cerebrovascular cells. Understanding the molecular mechanism(s) for regulation of this enzyme is deemed important in the development of new therapeutic targets for the treatment and prevention of neurodegenerative diseases.


Subject(s)
Central Nervous System/metabolism , Inflammation/metabolism , Oxidative Stress/physiology , Phospholipases A2, Cytosolic/metabolism , Signal Transduction/physiology , Animals , Calcium/metabolism , Neurons/metabolism
17.
Life Sci ; 98(1): 6-11, 2014 Mar 07.
Article in English | MEDLINE | ID: mdl-24398042

ABSTRACT

AIMS: The effects of methamphetamine are linked to stimulation of dopaminergic neurons, which can be accompanied by production of reactive oxygen species (ROS). Apocynin (4-hydroxy-3-methoxy-acetophenone) is a nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase (NOX) inhibitor shown to mitigate oxidative stress in a number of models. The present study aimed at testing whether apocynin suppresses the dopamine-releasing and locomotor-activating properties of methamphetamine. MAIN METHODS: (1) Apocynin (0.01-100µM) was applied to rat striatal slices preloaded with [(3)H]dopamine and its efficacy to evoke [(3)H]overflow and to alter methamphetamine (3µM)-evoked [(3)H]overflow was measured. (2) Groups of rats received apocynin (15 or 50mg/kg/day) or vehicle injection for seven consecutive days, and the efficacy and potency of methamphetamine to evoke [(3)H]overflow were determined. (3) Groups of apocynin-treated rats were administered methamphetamine (0.5 or 1mg/kg) or saline to determine the effect of apocynin on stimulant-induced hyperactivity. KEY FINDINGS: (1) Apocynin applied to striatal slices did not evoke [(3)H]overflow or alter methamphetamine-evoked [(3)H]overflow. (2) However, subchronic apocynin treatment significantly and dose-dependently decreased methamphetamine's potency and efficacy to evoke [(3)H]overflow. (3) Subchronic apocynin treatment also decreased the locomotor activity evoked by methamphetamine. SIGNIFICANCE: Subchronic apocynin treatment diminished methamphetamine induced dopamine-release and its locomotor-activating properties. The pattern of results indicates that apocynin is more effective after repeated, rather than after acute, treatment. The findings also suggest that NOX inhibitors or agents suppressing oxidative stress may constitute a new area for research to understand how methamphetamine produces its deleterious and neurotoxic outcomes in the brain.


Subject(s)
Acetophenones/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Dopamine/metabolism , Hyperkinesis/drug therapy , Methamphetamine/pharmacology , Acetophenones/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Dose-Response Relationship, Drug , Male , Motor Activity/drug effects , Rats , Rats, Sprague-Dawley
18.
PLoS One ; 8(10): e76904, 2013.
Article in English | MEDLINE | ID: mdl-24194849

ABSTRACT

Traumatic brain injury (TBI) is a leading cause of death and long-term disability. Following the initial insult, severe TBI progresses to a secondary injury phase associated with biochemical and cellular changes. The secondary injury is thought to be responsible for the development of many of the neurological deficits observed after TBI and also provides a window of opportunity for therapeutic intervention. Matrix metalloproteinase-9 (MMP-9 or gelatinase B) expression is elevated in neurological diseases and its activation is an important factor in detrimental outcomes including excitotoxicity, mitochondrial dysfunction and apoptosis, and increases in inflammatory responses and astrogliosis. In this study, we used an experimental mouse model of TBI to examine the role of MMP-9 and the therapeutic potential of SB-3CT, a mechanism-based gelatinase selective inhibitor, in ameliorating the secondary injury. We observed that activation of MMP-9 occurred within one day following TBI, and remained elevated for 7 days after the initial insult. SB-3CT effectively attenuated MMP-9 activity, reduced brain lesion volumes and prevented neuronal loss and dendritic degeneration. Pharmacokinetic studies revealed that SB-3CT and its active metabolite, p-OH SB-3CT, were rapidly absorbed and distributed to the brain. Moreover, SB-3CT treatment mitigated microglial activation and astrogliosis after TBI. Importantly, SB-3CT treatment improved long-term neurobehavioral outcomes, including sensorimotor function, and hippocampus-associated spatial learning and memory. These results demonstrate that MMP-9 is a key target for therapy to attenuate secondary injury cascades and that this class of mechanism-based gelatinase inhibitor-with such desirable pharmacokinetic properties-holds considerable promise as a potential pharmacological treatment of TBI.


Subject(s)
Brain Injuries/pathology , Enzyme Activation/drug effects , Heterocyclic Compounds, 1-Ring/pharmacology , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase Inhibitors/pharmacology , Sulfones/pharmacology , Analysis of Variance , Animals , Blood-Brain Barrier/metabolism , Brain/metabolism , Brain Injuries/metabolism , Fluorescence , Heterocyclic Compounds, 1-Ring/pharmacokinetics , Histological Techniques , Immunohistochemistry , Maze Learning , Mice , Sulfones/pharmacokinetics
19.
Neurosci Lett ; 554: 53-8, 2013 Oct 25.
Article in English | MEDLINE | ID: mdl-24012682

ABSTRACT

Resveratrol (3,4',5-trihydroxy-trans-stilbene) has been investigated for its potential as a prophylactic against degenerative diseases. It is a sirtulin activator that has recently been shown to regulate dopaminergic systems that contribute to the behavioral effects of methamphetamine and cocaine. The present study examined the impact of resveratrol on stimulant neuropsychopharmacology in rodents. Acute resveratrol treatment (20-40mg/kg) was ineffective to alter methamphetamine (0.5mg/kg)-induced hyperactivity in mice. Rodents received resveratrol once-daily for seven days to determine the effect of repeated polyphenolic treatment. Repeated resveratrol treatment (1-20mg/kg) decreased methamphetamine (0.5mg/kg)-induced hyperactivity in mice. Methamphetamine's (0.1-60µM) efficacy to evoke [(3)H]overflow from rat striatal slices preloaded with [(3)H]dopamine was also attenuated by repeated resveratrol (1mg/kg) treatment. Repeated resveratrol treatment (10-20mg/kg) did not affect cocaine-induced hyperactivity in mice. Overall, these data suggest that resveratrol appears to have metaplastic and prophylactic activity to minimize the effects of methamphetamine to increase locomotor activity and evoke dopamine release. These data encourage future research to further investigate the relationship between polyphenolics and psychostimulant abuse and dependence.


Subject(s)
Central Nervous System Stimulants/pharmacology , Corpus Striatum/drug effects , Dopamine/metabolism , Methamphetamine/pharmacology , Stilbenes/pharmacology , Animals , Cocaine/pharmacology , Corpus Striatum/metabolism , Drug Antagonism , In Vitro Techniques , Male , Mice , Motor Activity/drug effects , Rats , Rats, Sprague-Dawley , Resveratrol
20.
J Neuroinflammation ; 10: 15, 2013 Jan 29.
Article in English | MEDLINE | ID: mdl-23356518

ABSTRACT

BACKGROUND: The bark of magnolia has been used in Oriental medicine to treat a variety of remedies, including some neurological disorders. Magnolol (Mag) and honokiol (Hon) are isomers of polyphenolic compounds from the bark of Magnolia officinalis, and have been identified as major active components exhibiting anti-oxidative, anti-inflammatory, and neuroprotective effects. In this study, we investigate the ability of these isomers to suppress oxidative stress in neurons stimulated by the ionotropic glutamate receptor agonist N-methyl-D-aspartate (NMDA) and oxidative and inflammatory responses in microglial cells activated by interferon-γ (IFNγ) and lipopolysaccharide (LPS). We also attempt to elucidate the mechanism and signaling pathways involved in cytokine-induced production of reactive oxygen species (ROS) in microglial cells. METHODS: Dihydroethidium (DHE) was used to assay superoxide production in neurons, while CM-H2DCF-DA was used to test for ROS production in murine (BV-2) and rat (HAPI) immortalized microglial cells. NADPH oxidase inhibitors (for example, diphenyleneiodonium (DPI), AEBSF, and apocynin) and immunocytochemistry targeting p47phox and gp91phox were used to assess the involvement of NADPH oxidase. Western blotting was used to assess iNOS and ERK1/2 expression, and the Griess reaction protocol was employed to determine nitric oxide (NO) concentration. RESULTS: Exposure of Hon and Mag (1-10 µM) to neurons for 24 h did not alter neuronal viability, but both compounds (10 µM) inhibited NMDA-stimulated superoxide production, a pathway known to involve NADPH oxidase. In microglial cells, Hon and Mag inhibited IFNγ±LPS-induced iNOS expression, NO, and ROS production. Studies with inhibitors and immunocytochemical assay further demonstrated the important role of IFNγ activating the NADPH oxidase through the p-ERK-dependent pathway. Hon and, to a lesser extent, Mag inhibited IFNγ-induced p-ERK1/2 and its downstream pathway for ROS and NO production. CONCLUSION: This study highlights the important role of NADPH oxidase in mediating oxidative stress in neurons and microglial cells and has unveiled the role of IFNγ in stimulating the MAPK/ERK1/2 signaling pathway for activation of NADPH oxidase in microglial cells. Hon and Mag offer anti-oxidative or anti-inflammatory effects, at least in part, through suppressing IFNγ-induced p-ERK1/2 and its downstream pathway.


Subject(s)
Biphenyl Compounds/pharmacology , Inflammation Mediators/physiology , Lignans/pharmacology , Magnolia , Microglia/metabolism , Microglia/pathology , Neurons/metabolism , Oxidative Stress/physiology , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/therapeutic use , Biphenyl Compounds/chemistry , Biphenyl Compounds/therapeutic use , Cell Line, Transformed , Cells, Cultured , Inflammation/metabolism , Inflammation/pathology , Inflammation/prevention & control , Lignans/chemistry , Lignans/therapeutic use , Mice , Microglia/drug effects , Neurons/drug effects , Neurons/pathology , Oxidative Stress/drug effects , Polyphenols/chemistry , Polyphenols/pharmacology , Polyphenols/therapeutic use , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/antagonists & inhibitors , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...