Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Anal Bioanal Chem ; 416(1): 87-106, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37989847

ABSTRACT

The monitoring of stress levels in humans has become increasingly relevant, given the recent incline of stress-related mental health disorders, lifestyle impacts, and chronic physiological diseases. Long-term exposure to stress can induce anxiety and depression, heart disease, and risky behaviors, such as drug and alcohol abuse. Biomarker molecules can be quantified in biological fluids to study human stress. Cortisol, specifically, is a hormone biomarker produced in the adrenal glands with biofluid concentrations that directly correlate to stress levels in humans. The rapid, real-time detection of cortisol is necessary for stress management and predicting the onset of psychological and physical ailments. Current methods, including mass spectrometry and immunoassays, are effective for sensitive cortisol quantification. However, these techniques provide only single measurements which pose challenges in the continuous monitoring of stress levels. Additionally, these analytical methods often require trained personnel to operate expensive instrumentation. Alternatively, low-cost electrochemical biosensors enable the real-time detection and continuous monitoring of cortisol levels while also providing adequate analytical figures of merit (e.g., sensitivity, selectivity, sensor response times, detection limits, and reproducibility) in a simple design platform. This review discusses the recent developments in electrochemical biosensor design for the detection of cortisol in human biofluids. Special emphasis is given to biosensor recognition elements, including antibodies, molecularly imprinted polymers (MIPs), and aptamers, as critical components of electrochemical biosensors for cortisol detection. Furthermore, the advantages and limiting factors of various electrochemical techniques and sensing in complex biofluid matrices are overviewed. Remarks on the current challenges and future perspectives regarding electrochemical biosensors for stress monitoring are provided, including matrix effects (pH dependence and biological interferences), wearability, and large-scale production.


Subject(s)
Biosensing Techniques , Hydrocortisone , Humans , Reproducibility of Results , Biosensing Techniques/methods , Antibodies , Biomarkers/analysis , Electrochemical Techniques/methods
2.
Angew Chem Int Ed Engl ; 62(46): e202307780, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37428529

ABSTRACT

Bioelectrocatalytic synthesis is the conversion of electrical energy into value-added products using biocatalysts. These methods merge the specificity and selectivity of biocatalysis and energy-related electrocatalysis to address challenges in the sustainable synthesis of pharmaceuticals, commodity chemicals, fuels, feedstocks and fertilizers. However, the specialized experimental setups and domain knowledge for bioelectrocatalysis pose a significant barrier to adoption. This review introduces key concepts of bioelectrosynthetic systems. We provide a tutorial on the methods of biocatalyst utilization, the setup of bioelectrosynthetic cells, and the analytical methods for assessing bioelectrocatalysts. Key applications of bioelectrosynthesis in ammonia production and small-molecule synthesis are outlined for both enzymatic and microbial systems. This review serves as a necessary introduction and resource for the non-specialist interested in bioelectrosynthetic research.


Subject(s)
Electricity , Biocatalysis
3.
Chem Commun (Camb) ; 59(15): 2142-2145, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36727430

ABSTRACT

Redox flow battery (RFB) electrolyte degradation is a common failure mechanism in RFBs. We report an RFB using genetically engineered, phenazine-producing Escherichia coli to serve as an anolyte regeneration system capable of repairing the degraded/decomposed redox-active phenazines. This work represents a new strategy for improving the stability of RFB systems because, under the influence of genetically engineered microbes, the anolyte species does not display degradation after battery cycling.

4.
iScience ; 24(9): 103033, 2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34522869

ABSTRACT

Phenazines are redox-active nitrogen-containing heterocyclic compounds that can be produced by either bacteria or synthetic approaches. As an electron shuttles (mediators), phenazines are involved in several biological processes facilitating extracellular electron transfer (EET). Therefore, it is of great importance to understand the structural and electronic properties of phenazines that promote EET in microbial electrochemical systems. Our previous study experimentally investigated a phenazine-based library as an exogenous mediator system to facilitate EET in Escherichia coli. Herein, we combine our experimental data with density functional theory (DFT) calculations and multivariate linear regression modeling to understand the structure-function relationships in phenazine-based mediated EET. These calculations demonstrate that the computed redox properties of phenazines in lipophilic environments (e.g., cell membrane) correlate to experimental mediated current densities. Additional DFT-derived molecular properties were considered to develop a predictive model, which could be used in metabolic engineering approaches to introduce phenazines as endogenous mediators into bacteria.

5.
Langmuir ; 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34132548

ABSTRACT

Photobioelectrocatalysis (PBEC) adopts the sophistication and sustainability of photosynthetic units to convert solar energy into electrical energy. However, the electrically insulating outer membranes of photosynthetic units hinder efficient extracellular electron transfer from photosynthetic redox centers to an electrode in photobioelectrocatalytic systems. Among the artificial redox-mediating approaches used to enhance electrochemical communication at this biohybrid interface, conducting redox polymers (CRPs) are characterized by high intrinsic electric conductivities for efficient charge transfer. A majority of these CRPs constitute peripheral redox pendants attached to a conducting backbone by a linker. The consequently branched CRPs necessitate maintaining synergistic interactions between the pendant, linker, and backbone for optimal mediator performance. Herein, an unbranched, metal-free CRP, polydihydroxy aniline (PDHA), which has its redox moiety embedded in the polymer mainchain, is used as an exogenous redox mediator and an immobilization matrix at the biohybrid interface. As a proof of concept, the relatively complex membrane system of spinach chloroplasts is used as the photobioelectrocatalyst of choice. A "mixed" deposition of chloroplasts and PDHA generated a 2.4-fold photocurrent density increment. An alternative "layered" PDHA-chloroplast deposition, which was used to control panchromatic light absorbance by the intensely colored PDHA competing with the photoactivity of chloroplasts, generated a 4.2-fold photocurrent density increment. The highest photocurrent density recorded with intact chloroplasts was achieved by the "layered" deposition when used in conjunction with the diffusible redox mediator 2,6-dichlorobenzoquinone (-48 ± 3 µA cm-2). Our study effectively expands the scope of germane CRPs in PBEC, emphasizing the significance of the rational selection of CRPs for electrically insulating photobioelectrocatalysts and of the holistic modulation of the CRP-mediated biohybrids for optimal performance.

6.
Biosensors (Basel) ; 11(2)2021 Feb 12.
Article in English | MEDLINE | ID: mdl-33673343

ABSTRACT

Halophilic bacteria are remarkable organisms that have evolved strategies to survive in high saline concentrations. These bacteria offer many advances for microbial-based biotechnologies and are commonly used for industrial processes such as compatible solute synthesis, biofuel production, and other microbial processes that occur in high saline environments. Using halophilic bacteria in electrochemical systems offers enhanced stability and applications in extreme environments where common electroactive microorganisms would not survive. Incorporating halophilic bacteria into microbial fuel cells has become of particular interest for renewable energy generation and self-powered biosensing since many wastewaters can contain fluctuating and high saline concentrations. In this perspective, we highlight the evolutionary mechanisms of halophilic microorganisms, review their application in microbial electrochemical sensing, and offer future perspectives and directions in using halophilic electroactive microorganisms for high saline biosensing.


Subject(s)
Bioelectric Energy Sources , Environmental Monitoring/methods , Salt Tolerance/physiology , Water Microbiology , Salinity
7.
ACS Appl Mater Interfaces ; 13(9): 10942-10951, 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33646753

ABSTRACT

Over the past two decades, the designs of redox polymers have become critical to the field of mediated bioelectrocatalysis and are used in commercial glucose biosensors, as well as other bioelectrochemical applications (e.g., energy harvesting). These polymers are specifically used to immobilize redox mediators on electrode surfaces, allowing for self-exchange-based conduction of electrons from enzymes far from the electrode to the electrode surface. However, the synthesis of redox polymers is challenging and results in large batch-to-batch variability. Herein, we report a rapid entrapment of mediators for NAD+-dependent bioelectrocatalysis within reverse ionically condensed polyelectrolytes. A high ionic strength aqueous solution of oppositely charged polyelectrolytes, composed of cationic polyguanidinium (PG) chloride and anionic sodium hexametaphosphate (P6), undergoes phase inversion into a solid microporous polyelectrolyte complex (PEC) when introduced into a low ionic strength aqueous solution. The ionic strength-triggered phase inversion of PGP6 solutions was investigated as a means to entrap mediators on the surface of electrodes for mediated bioelectrocatalysis. Compared to the traditional cross-linked immobilizations using redox polymers, this phase inversion takes place within seconds and requires up to 60 min for complete stabilization. In this work, redox mediator phenazine ethosulfate (PES) was entrapped within PGP6 on electrode surfaces for nicotinamide adenine dinucleotide (NAD+)-dependent bioelectrocatalysis. In the bulk solution, NAD+-dependent dehydrogenase enzymes catalyze the oxidation of the substrate while reducing NAD to reduced nicotinamide adenine dinucleotide (NADH). The resulting NADH is reoxidized to NAD+ by the entrapped PES that gets reduced on the electrode, completing the NAD+-regeneration-based bioelectrocatalysis. To show the use of these new materials in an application, biofuel cells were evaluated using four different anodic enzyme systems (alcohol dehydrogenase, lactate hydrogenase, glycerol dehydrogenase, and glucose dehydrogenase).


Subject(s)
NAD/chemistry , Oxidoreductases/chemistry , Phenazines/chemistry , Polyelectrolytes/chemistry , Biocatalysis , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Electrodes , Enzymes, Immobilized/chemistry , Guanidines/chemistry , Oxidation-Reduction , Phosphates/chemistry
8.
ChemSusChem ; 14(7): 1674-1686, 2021 Apr 09.
Article in English | MEDLINE | ID: mdl-33577707

ABSTRACT

The development of electrochemical catalytic conversion of 5-hydroxymethylfurfural (HMF) has recently gained attention as a potentially scalable approach for both oxidation and reduction processes yielding value-added products. While the possibility of electrocatalytic HMF transformations has been demonstrated, this growing research area is in its initial stages. Additionally, its practical applications remain limited due to low catalytic activity and product selectivity. Understanding the catalytic processes and design of electrocatalysts are important in achieving a selective and complete conversion into the desired highly valuable products. In this Minireview, an overview of the most recent status, advances, and challenges of oxidation and reduction processes of HMF was provided. Discussion and summary of voltammetric studies and important reaction factors (e. g., catalyst type, electrode material) were included. Finally, biocatalysts (e. g., enzymes, whole cells) were introduced for HMF modification, and future opportunities to combine biocatalysts with electrochemical methods for the production of high-value chemicals from HMF were discussed.

9.
ACS Sens ; 5(11): 3547-3557, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33175510

ABSTRACT

The targeted diagnosis and effective treatments of chronic skin wounds remain a healthcare burden, requiring the development of sensors for real-time monitoring of wound healing activity. Herein, we describe an adaptable method for the fabrication of carbon ultramicroelectrode arrays (CUAs) on flexible substrates with the goal to utilize this sensor as a wearable device to monitor chronic wounds. As a proof-of-concept study, we demonstrate the electrochemical detection of three electroactive analytes as biomarkers for wound healing state in simulated wound media on flexible CUAs. Notably, to follow pathogenic responses, we characterize analytical figures of merit for identification and monitoring of bacterial warfare toxin pyocyanin (PYO) secreted by the opportunistic human pathogen Pseudomonas aeruginosa. We also demonstrate the detection of uric acid (UA) and nitric oxide (NO•), which are signaling molecules indicative of wound healing and immune responses, respectively. The electrochemically determined limit of detection (LOD) and linear dynamic range (LDR) for PYO, UA, and NO• fall within the clinically relevant concentrations. Additionally, we demonstrate the successful use of flexible CUAs for quantitative, electrochemical detection of PYO from P. aeruginosa strains and cellular NO• from immune cells in the wound matrix. Moreover, we present an electrochemical examination of the interaction between PYO and NO•, providing insight into pathogen-host responses. Finally, the effects of the antimicrobial agent, silver (Ag+), on P. aeruginosa PYO production rates are investigated on flexible CUAs. Our electrochemical results show that the addition of Ag+ to P. aeruginosa in wound simulant decreases PYO secretion rates.


Subject(s)
Pseudomonas aeruginosa , Pyocyanine , Biomarkers , Humans , Limit of Detection , Wound Healing
10.
Chem Rev ; 120(23): 12903-12993, 2020 12 09.
Article in English | MEDLINE | ID: mdl-33050699

ABSTRACT

Bioelectrocatalysis is an interdisciplinary research field combining biocatalysis and electrocatalysis via the utilization of materials derived from biological systems as catalysts to catalyze the redox reactions occurring at an electrode. Bioelectrocatalysis synergistically couples the merits of both biocatalysis and electrocatalysis. The advantages of biocatalysis include high activity, high selectivity, wide substrate scope, and mild reaction conditions. The advantages of electrocatalysis include the possible utilization of renewable electricity as an electron source and high energy conversion efficiency. These properties are integrated to achieve selective biosensing, efficient energy conversion, and the production of diverse products. This review seeks to systematically and comprehensively detail the fundamentals, analyze the existing problems, summarize the development status and applications, and look toward the future development directions of bioelectrocatalysis. First, the structure, function, and modification of bioelectrocatalysts are discussed. Second, the essentials of bioelectrocatalytic systems, including electron transfer mechanisms, electrode materials, and reaction medium, are described. Third, the application of bioelectrocatalysis in the fields of biosensors, fuel cells, solar cells, catalytic mechanism studies, and bioelectrosyntheses of high-value chemicals are systematically summarized. Finally, future developments and a perspective on bioelectrocatalysis are suggested.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Catalysis , Electrodes , Oxidation-Reduction
11.
Analyst ; 144(22): 6461-6478, 2019 Nov 04.
Article in English | MEDLINE | ID: mdl-31603150

ABSTRACT

Microbial infections remain the principal cause for high morbidity and mortality rates. While approximately 1400 human pathogens have been recognized, the majority of healthcare-associated infectious diseases are caused by only a few opportunistic pathogens (e.g., Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli), which are associated with increased antibiotic and antimicrobial resistance. Rapid detection, reliable identification and real-time monitoring of these pathogens remain not only a scientific problem but also a practical challenge of vast importance, especially in tailoring effective treatment strategies. Although the development of vaccinations and antibacterial drug treatments are the leading research, progress, and implementation of early warning, quantitative systems indicative of confirming pathogen presence are necessary. Over the years, various approaches, such as conventional culturing, straining, molecular methods (e.g., polymerase chain reaction and immunological assays), microscopy-based and mass spectrometry techniques, have been employed to identify and quantify pathogenic agents. While being sensitive in some cases, these procedures are costly, time-consuming, mostly qualitative, and are indirect detection methods. A great challenge is therefore to develop rapid, highly sensitive, specific devices with adequate figures of merit to corroborate the presence of microbes and enable dynamic real-time measurements of metabolism. As an alternative, electrochemical sensor platforms have been developed as powerful quantitative tools for label-free detection of infection-related biomarkers with high sensitivity. This minireview is focused on the latest electrochemical-based approaches for pathogen sensing, putting them into the context of standard sensing methods, such as cell culturing, mass spectrometry, and fluorescent-based approaches. Description of the latest, impactful electrochemical sensors for pathogen detection will be presented. Recent breakthroughs will be highlighted, including the use of micro- and nano-electrode arrays for real-time detection of bacteria in polymicrobial infections and microfluidic devices for pathogen separation analysis. We will conclude with perspectives and outlooks to understand shortcomings in designing future sensing schemes. The need for high sensitivity and selectivity, low-cost implementation, fast detection, and screening increases provides an impetus for further development in electrochemical detectors for microorganisms and biologically relevant targets.


Subject(s)
Bacteria/isolation & purification , Electrochemical Techniques/methods , Biomarkers/analysis , Biosensing Techniques/methods , Electrochemical Techniques/instrumentation , Humans , Lab-On-A-Chip Devices , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods
12.
Biosens Bioelectron ; 142: 111538, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31376710

ABSTRACT

The opportunistic human pathogen Pseudomonas aeruginosa (Pa) causes several infections acquired in a healthcare setting. During initial stages of infection, Pa produces redox-active phenazine metabolites, including pyocyanin (PYO), 5-methylphenazine-1-carboxylic acid (5-MCA), and 1-hydroxyphenazine (OHPHZ), which have toxic effects on surrounding host cells and/or other microbes. Rapid and sensitive detection of these metabolites provides important evidence about the onset of Pa infections. Herein, we investigate differences in Pa phenazine production and dynamics in polymicrobial communities. Specifically, Pa was co-cultured with two pathogens of clinical relevance, Staphylococcus aureus (Sa) and Escherichia coli (Ec), which typically populate infection sites with Pa. Phenazine production rates and biosynthesis dynamics were electrochemically monitored during a 48-h period using recently developed transparent carbon ultramicroelectrode arrays (T-CUAs). Moreover, the effect on phenazine production rates and dynamics was explored in two growth media, lysogeny broth (LB) and tryptic soy broth (TSB). The concentrations of PYO and highly reactive 5-MCA were determined in different polymicrobial culture samples in both media. The results demonstrate that other bacterial pathogens noticeably influence Pa phenazine production and dynamics. In particular, Sa caused a decrease in phenazine production in TSB. However, the presence of Ec in polymicrobial samples drastically inhibited phenazine production rates in both LB and TSB. Conclusively, the media type significantly influences phenazine product distribution, especially in polymicrobial co-cultures, signifying the need for analytical standardization of simulation media in the study of polymicrobial communities.


Subject(s)
Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/growth & development , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Coculture Techniques , Coinfection/microbiology , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Equipment Design , Escherichia coli/growth & development , Escherichia coli/metabolism , Escherichia coli Infections/microbiology , Humans , Microelectrodes , Phenazines/analysis , Phenazines/metabolism , Pseudomonas aeruginosa/metabolism , Staphylococcal Infections/microbiology , Staphylococcus aureus/growth & development , Staphylococcus aureus/metabolism
13.
ACS Sens ; 4(1): 170-179, 2019 01 25.
Article in English | MEDLINE | ID: mdl-30525472

ABSTRACT

Here, we use a recently developed electrochemical sensing platform of transparent carbon ultramicroelectrode arrays (T-CUAs) for the in vitro detection of phenazine metabolites from the opportunistic human pathogen Pseudomonas aeruginosa. Specifically, redox-active metabolites pyocyanin (PYO), 5-methylphenazine-1-carboxylic acid (5-MCA), and 1-hydroxyphenazine (OHPHZ) are produced by P. aeruginosa, which is commonly found in chronic wound infections and in the lungs of cystic fibrosis patients. As highly diffusible chemicals, PYO and other metabolites are extremely toxic to surrounding host cells and other competing microorganisms, thus their detection is of great importance as it could provide insights regarding P. aeruginosa virulence mechanisms. Phenazine metabolites are known to play important roles in cellular functions; however, very little is known about how their concentrations fluctuate and influence cellular behaviors over the course of infection and growth. Herein we report the use of easily assembled, low-cost electrochemical sensors that provide rapid response times, enhanced sensitivity, and high reproducibility. As such, these T-CUAs enable real-time electrochemical monitoring of PYO and another extremely reactive and distinct redox-active phenazine metabolite, 5-methylphenazine-1-carboxylic acid (5-MCA), from a highly virulent laboratory P. aeruginosa strain, PA14. In addition to quantifying phenazine metabolite concentrations, changes in phenazine dynamics are observed in the biosynthetic route for the production of PYO. Our quantitative results, over a 48-h period, show increasing PYO concentrations during the first 21 h of bacterial growth, after which PYO levels plateau and then slightly decrease. Additionally, we explore environmental effects on phenazine dynamics and PYO concentrations in two growth media, tryptic soy broth (TSB) and lysogeny broth (LB). The maximum concentrations of cellular PYO were determined to be 190 ± 5 µM and 150 ± 1 µM in TSB and LB, respectively. Finally, using desorption electrospray ionization (DESI) and nanoelectrospray ionization (nano-ESI) mass spectrometry we confirm the detection and identification of reactive phenazine metabolites.


Subject(s)
Carbon/chemistry , Microelectrodes , Pseudomonas aeruginosa/metabolism , Pyocyanine/analysis , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Microarray Analysis/methods , Phenazines/analysis , Phenazines/metabolism , Pyocyanine/biosynthesis , Pyocyanine/metabolism , Reproducibility of Results , Spectrometry, Mass, Electrospray Ionization
14.
Proc Natl Acad Sci U S A ; 115(18): 4779-4784, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29666244

ABSTRACT

Quorum sensing (QS) is a bacterial communication system that involves production and sensing of extracellular signals. In laboratory models, QS allows bacteria to monitor and respond to their own cell density and is critical for fitness. However, how QS proceeds in natural, spatially structured bacterial communities is not well understood, which significantly hampers our understanding of the emergent properties of natural communities. To address this gap, we assessed QS signaling in the opportunistic pathogen Pseudomonas aeruginosa in a cystic fibrosis (CF) lung infection model that recapitulates the biogeographical aspects of the natural human infection. In this model, P. aeruginosa grows as spatially organized, highly dense aggregates similar to those observed in the human CF lung. By combining this natural aggregate system with a micro-3D-printing platform that allows for confinement and precise spatial positioning of P. aeruginosa aggregates, we assessed the impact of aggregate size and spatial positioning on both intra- and interaggregate signaling. We discovered that aggregates containing ∼2,000 signal-producing P. aeruginosa were unable to signal neighboring aggregates, while those containing ≥5,000 cells signaled aggregates as far away as 176 µm. Not all aggregates within this "calling distance" responded, indicating that aggregates have differential sensitivities to signal. Overexpression of the signal receptor increased aggregate sensitivity to signal, suggesting that the ability of aggregates to respond is defined in part by receptor levels. These studies provide quantitative benchmark data for the impact of spatial arrangement and phenotypic heterogeneity on P. aeruginosa signaling in vivo.


Subject(s)
Cystic Fibrosis/metabolism , Models, Biological , Pseudomonas Infections/metabolism , Pseudomonas aeruginosa/metabolism , Quorum Sensing/physiology , Signal Transduction/physiology , Cystic Fibrosis/microbiology , Humans
15.
Anal Chem ; 89(12): 6285-6289, 2017 06 20.
Article in English | MEDLINE | ID: mdl-28558232

ABSTRACT

Pyocyanin is a virulence factor produced as a secondary metabolite by the opportunistic human pathogen, Pseudomonas aeruginosa. Fast and direct detection of pyocyanin is of importance as it could provide important insights regarding P. aeruginosa's virulence mechanisms. Here, we present an electrochemical sensing platform of redox-active pyocyanin using transparent carbon ultramicroelectrode arrays (T-CUAs), which were made using a previously reported simple fabrication process ( Duay et al. Anal. Chem. 2015 , 87 , 10109 ). Square-wave voltammetry was used to quantify pyocyanin concentrations on T-CUAs with and without chitosan gold nanoparticles (CS/GNP) and planar transparent macroelectrodes (T-Macro). The response time (RT), limit of detection (LOD), and linear dynamic range (LDR) differ for each electrode type due to subtle influences in how the detectable signal varies in relation to the charging time and resistive and capacitive noise. In general lower LODs can be achieved at the consequence of smaller LDRs. The LOD for T-Macro was 0.75 ± 0.09 µM with a LDR of 0.75-25 µM, and the LOD for the CS/GNP 1.54 T-CUA was determined to be 1.6 ± 0.2 µM with a LDR of 1-100 µM, respectively. The LOD for the 1.54T-CUA with a larger LDR of 1-250 µM was 1.0 ± 0.3 µM. These LODs and LDRs fall within the range of PYO concentrations for a variety of in vitro and in vivo cellular environments and offer promise of the application of T-CUAs for the quantitative study of biotoxins, quorum sensing, and pathogenesis. Finally, we demonstrate the successful use of T-CUAs for the electrochemical detection of pyocyanin secreted from P. aeruginosa strains while optically imaging the cells. The secreted pyocyanin levels from two bacterial strains, PA11 and PA14, were measured to have concentrations of 45 ± 5 and 3 ± 2 µM, respectively.

16.
Anal Chem ; 89(2): 1267-1274, 2017 01 17.
Article in English | MEDLINE | ID: mdl-27989112

ABSTRACT

Transparent carbon ultramicroelectrode arrays (T-CUAs) were made using a previously reported facile fabrication method (Duay et al. Anal. Chem. 2015, 87, 10109). Two modifications introduced to the T-CUAs were examined for their analytical response to nitric oxide (NO•). The first modification was the application of a cellulose acetate (CA) gas permeable membrane. Its selectivity to NO• was extensively characterized via chronoamperometry, electrochemical impedance spectroscopy (EIS), and atomic force microscopy (AFM). The thickness of the CA membrane was determined to be 100 nm and 88 ± 15 nm using AFM and EIS, respectively. Furthermore, the partition and diffusion coefficients of NO• within the CA membrane were determined to be 0.0500 and 2.44 × 10-13 m2/s using EIS measurements. The second modification to the 1.54T-CUA was the introduction of chitosan and gold nanoparticles (CS/GNPs) to enhance its catalytic activity, sensitivity, and limit of detection (LOD) to NO•. Square wave voltammetry was used to quantify the NO• concentration at the CA membrane covered 1.54T-CUA with and without CS/GNPs; the LODs were determined to be 0.2 ± 0.1 and 0.44 ± 0.02 µM (S/N = 3), with sensitivities of 9 ± 9 and 1.2 ± 0.4 nA/µM, respectively. Our results indicate that this modification to the arrays results in a significant catalytic enhancement to the electrochemical oxidation of NO•. Hence, these electrodes allow for the in situ mechanistic and kinetic characterization of electrochemical reactions with high electroanalytical sensitivity.

SELECTION OF CITATIONS
SEARCH DETAIL
...