Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Hepatol ; 45(5): 725-33, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16935387

ABSTRACT

BACKGROUND/AIMS: To understand the molecular mechanisms underlying non-alcoholic steatohepatitis (NASH) prevention by S-nitroso-N-acetylcysteine (SNAC), an NO donor that inhibits lipid peroxidation, we examined hepatic differentially expressed genes between ob/ob mice receiving or not SNAC treatment concomitantly with a methionine-choline deficient (MCD) diet. METHODS: Ob/ob mice were assigned to receive oral SNAC fed solution (MCD+SNAC group) or vehicle (MCD group) by gavage. After four weeks, histopathological analysis and microarray hybridizations were conducted in liver tissues from groups. GeneSifter system was used to identify differentially expressed genes and pathways according to Gene Ontology. RESULTS: NASH was absent in the MCD+SNAC group and no significant changes in food intake or body weight were observed in comparison to MCD group. After SNAC treatment, several genes belonging to oxidative phosphorylation, fatty acid biosynthesis, fatty acid metabolism and glutathione metabolism pathways were down-regulated in comparison to the MCD group. CONCLUSIONS: SNAC treatment promotes down regulation of several genes from fatty acid (FA) metabolism related pathways, possibly through abrogation of the cytotoxic effects of reactive oxygen species and lipid peroxides with consequent prevention of mitochondrial overload. Further studies are required to investigate the clinical implications of these findings, in attempt to develop novel therapeutic strategies for NAFLD treatment.


Subject(s)
Acetylcysteine/analogs & derivatives , Antioxidants/pharmacology , Fatty Liver/genetics , Fatty Liver/prevention & control , Lipid Peroxidation/drug effects , Acetylcysteine/pharmacology , Animals , Choline Deficiency/drug therapy , Down-Regulation , Fatty Acids/metabolism , Fatty Liver/metabolism , Gene Expression Profiling/methods , Male , Mice , Models, Animal , Oligonucleotide Array Sequence Analysis/methods , Reactive Oxygen Species , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...