Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Nutr Rev ; 82(2): 193-209, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-37290429

ABSTRACT

CONTEXT: There is substantial evidence that reduced short-chain fatty acids (SCFAs) in the gut are associated with obesity and type 2 diabetes, although findings from clinical interventions that can increase SCFAs are inconsistent. OBJECTIVE: This systematic review and meta-analysis aimed to assess the effect of SCFA interventions on fasting glucose, fasting insulin, and homeostatic model assessment of insulin resistance (HOMA-IR). DATA SOURCES: Relevant articles published up to July 28, 2022, were extracted from PubMed and Embase using the MeSH (Medical Subject Headings) terms of the defined keywords [(short-chain fatty acids) AND (obesity OR diabetes OR insulin sensitivity)] and their synonyms. Data analyses were performed independently by two researchers who used the Cochrane meta-analysis checklist and the PRISMA guidelines. DATA EXTRACTION: Clinical studies and trials that measured SCFAs and reported glucose homeostasis parameters were included in the analysis. Standardized mean differences (SMDs) with 95%CIs were calculated using a random-effects model in the data extraction tool Review Manager version 5.4 (RevMan 5.4). The risk-of-bias assessment was performed following the Cochrane checklist for randomized and crossover studies. DATA ANALYSIS: In total, 6040 nonduplicate studies were identified, 23 of which met the defined criteria, reported fasting insulin, fasting glucose, or HOMA-IR values, and reported change in SCFA concentrations post intervention. Meta-analyses of these studies indicated that fasting insulin concentrations were significantly reduced (overall effect: SMD = -0.15; 95%CI = -0.29 to -0.01, P = 0.04) in treatment groups, relative to placebo groups, at the end of the intervention. Studies with a confirmed increase in SCFAs at the end of intervention also had a significant effect on lowering fasting insulin (P = 0.008). Elevated levels of SCFAs, compared with baseline levels, were associated with beneficial effects on HOMA-IR (P < 0.00001). There was no significant change in fasting glucose concentrations. CONCLUSION: Increased postintervention levels of SCFAs are associated with lower fasting insulin concentrations, offering a beneficial effect on insulin sensitivity. SYSTEMATIC REVIEW REGISTRATION: PROSPERO registration number CRD42021257248.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Humans , Diabetes Mellitus, Type 2/prevention & control , Diabetes Mellitus, Type 2/drug therapy , Insulin , Obesity , Glucose , Fatty Acids, Volatile/therapeutic use , Blood Glucose/analysis
2.
Cancers (Basel) ; 15(20)2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37894321

ABSTRACT

The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a well characterised tumour suppressor, playing a critical role in the maintenance of fundamental cellular processes including cell proliferation, migration, metabolism, and survival. Subtle decreases in cellular levels of PTEN result in the development and progression of cancer, hence there is tight regulation of the expression, activity, and cellular half-life of PTEN at the transcriptional, post-transcriptional, and post-translational levels. PTENP1, the processed pseudogene of PTEN, is an important transcriptional and post-transcriptional regulator of PTEN. PTENP1 expression produces sense and antisense transcripts modulating PTEN expression, in conjunction with miRNAs. Due to the high sequence similarity between PTEN and the PTENP1 sense transcript, the transcripts possess common miRNA binding sites with the potential for PTENP1 to compete for the binding, or 'sponging', of miRNAs that would otherwise target the PTEN transcript. PTENP1 therefore acts as a competitive endogenous RNA (ceRNA), competing with PTEN for the binding of specific miRNAs to alter the abundance of PTEN. Transcription from the antisense strand produces two functionally independent isoforms (PTENP1-AS-α and PTENP1-AS-ß), which can regulate PTEN transcription. In this review, we provide an overview of the post-transcriptional regulation of PTEN through interaction with its pseudogene, the cellular miRNA milieu and operation of the ceRNA network. Furthermore, its importance in maintaining cellular integrity and how disruption of this PTEN-miRNA-PTENP1 axis may lead to cancer but also provide novel therapeutic opportunities, is discussed. Precision targeting of PTENP1-miRNA mediated regulation of PTEN may present as a viable alternative therapy.

3.
Cells ; 11(14)2022 07 08.
Article in English | MEDLINE | ID: mdl-35883588

ABSTRACT

Type 1 diabetes is a chronic illness in which the native beta (ß)-cell population responsible for insulin release has been the subject of autoimmune destruction. This condition requires patients to frequently measure their blood glucose concentration and administer multiple daily exogenous insulin injections accordingly. Current treatments fail to effectively treat the disease without significant side effects, and this has led to the exploration of different approaches for its treatment. Gene therapy and the use of viral vectors has been explored extensively and has been successful in treating a range of diseases. The use of viral vectors to deliver ß-cell transcription factors has been researched in the context of type 1 diabetes to induce the pancreatic transdifferentiation of cells to replace the ß-cell population destroyed in patients. Studies have used various combinations of pancreatic and ß-cell transcription factors in order to induce pancreatic transdifferentiation and have achieved varying levels of success. This review will outline why pancreatic transcription factors have been utilised and how their application can allow the development of insulin-producing cells from non ß-cells and potentially act as a cure for type 1 diabetes.


Subject(s)
Cell Transdifferentiation , Diabetes Mellitus, Type 1 , Insulin-Secreting Cells , Cell Transdifferentiation/genetics , Cellular Reprogramming Techniques/methods , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/therapy , Humans , Insulin , Transcription Factors/genetics
4.
Article in English | MEDLINE | ID: mdl-35259108

ABSTRACT

Modern work environments have extensive interactions with technology and greater cognitive complexity of the tasks, which results in human operators experiencing increased mental workload. Air traffic control operators routinely work in such complex environments, and we designed tracking and collision prediction tasks to emulate their elementary tasks. The physiological response to the workload variations in these tasks was elucidated to untangle the impact of workload variations experienced by operators. Electroencephalogram (EEG), eye activity, and heart rate variability (HRV) data were recorded from 24 participants performing tracking and collision prediction tasks with three levels of difficulty. Our findings indicate that variations in task load in both these tasks are sensitively reflected in EEG, eye activity and HRV data. Multiple regression results also show that operators' performance in both tasks can be predicted using the corresponding EEG, eye activity and HRV data. The results also demonstrate that the brain dynamics during each of these tasks can be estimated from the corresponding eye activity, HRV and performance data. Furthermore, the markedly distinct neurometrics of workload variations in the tracking and collision prediction tasks indicate that neurometrics can provide insights on the type of mental workload. These findings have applicability to the design of future mental workload adaptive systems that integrate neurometrics in deciding not just "when" but also "what" to adapt. Our study provides compelling evidence in the viability of developing intelligent closed-loop mental workload adaptive systems that ensure efficiency and safety in complex work environments.


Subject(s)
Aviation , Workload , Brain/physiology , Electroencephalography/methods , Heart Rate , Humans , Task Performance and Analysis , Workload/psychology
5.
Article in English | MEDLINE | ID: mdl-35206374

ABSTRACT

The COVID-19 pandemic has incited a rise in anxiety, with uncertainty regarding the specific impacts and risk factors across multiple populations. A qualitative systematic review was conducted to investigate the prevalence and associations of anxiety in different sample populations in relation to the COVID-19 pandemic. Four databases were utilised in the search (Medline, EMBASE, CINAHL, and PsycINFO). The review period commenced in April 2021 and was finalised on 5 July 2021. A total of 3537 studies were identified of which 87 were included in the review (sample size: 755,180). Healthcare workers had the highest prevalence of anxiety (36%), followed by university students (34.7%), the general population (34%), teachers (27.2%), parents (23.3%), pregnant women (19.5%), and police (8.79%). Risk factors such as being female, having pre-existing mental conditions, lower socioeconomic status, increased exposure to infection, and being younger all contributed to worsened anxiety. The review included studies published before July 2021; due to the ongoing nature of the COVID-19 pandemic, this may have excluded relevant papers. Restriction to only English papers and a sample size > 1000 may have also limited the range of papers included. These findings identify groups who are most vulnerable to developing anxiety in a pandemic and what specific risk factors are most common across multiple populations.


Subject(s)
COVID-19 , Anxiety/epidemiology , COVID-19/epidemiology , Depression/epidemiology , Female , Humans , Mental Health , Pandemics , Pregnancy , SARS-CoV-2
6.
J Drugs Dermatol ; 21(2): 141-145, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35133118

ABSTRACT

BACKGROUND: Malassezin is a natural indole compound produced by the fungus Malassezia furfur and preclinical investigations have demonstrated an ability to suppress melanogenesis. OBJECTIVE: To investigate the histopathological effects of malassezin for treatment of facial hyperpigmentation. METHODS: In this proof-of-concept study, seven subjects with facial hyperpigmentation caused by melasma or photodamage applied topical malassezin twice daily for 14 weeks, followed by eight weeks of observation. At baseline, 2 mm punch biopsies were taken from hyperpigmented areas and adjacent uninvolved skin. Skin biopsies from hyperpigmented areas were repeated at 8, 14, and 22 weeks. Paraffin-embedded sections were cut and stained with H&E, Fontana Masson, and MART 1 and assessed for histopathological changes. RESULTS: Increased epidermal melanin and dermal melanophages were observed in all biopsies at baseline in the hyperpigmented compared to uninvolved skin of all subjects. Eight and 14 week biopsies of involved skin revealed decreased epidermal melanin in all subjects treated with malassezin. Melanocytes appeared less dendritic compared to baseline, and numbers were slightly reduced at eight weeks. Biopsies at 22 weeks showed no significant difference in epidermal melanin levels compared to baseline hyperpigmented skin, and melanocytes were comparable in number and dendricity to baseline. There was no evidence of melanocyte atypia in any of the biopsies. These features were similar in melasma and photo-damaged skin. CONCLUSION: This study documents the histopathological features and ability of malassezin, a novel agent unique to the skin microbiome, to decrease epidermal pigmentation and the temporary and revisable nature of the process. J Drugs Dermatol. 2022;21(2):141-145. doi:10.36849/JDD.6596.


Subject(s)
Hyperpigmentation , Microbiota , Humans , Hyperpigmentation/drug therapy , Indoles , Melanocytes
8.
STAR Protoc ; 2(4): 100910, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34746868

ABSTRACT

MicroRNAs (miRNAs) are elements of the gene regulatory network and manipulating their abundance is essential toward elucidating their role in patho-physiological conditions. We present a detailed workflow that identifies important miRNAs using a machine learning algorithm. We then provide optimized techniques to validate the identified miRNAs through over-expression/loss-of-function studies. Overall, these protocols apply to any field in biology where high-dimensional data are produced. For complete details on the use and execution of this protocol, please refer to Wong et al. (2021a).


Subject(s)
Gene Expression Profiling/methods , Machine Learning , MicroRNAs/genetics , Transcriptome/genetics , Algorithms , Cell Culture Techniques/methods , Cells, Cultured , Gene Knockdown Techniques , Gene Regulatory Networks/genetics , Humans , Islets of Langerhans/cytology , Workflow
9.
Methods Mol Biol ; 2324: 165-185, 2021.
Article in English | MEDLINE | ID: mdl-34165715

ABSTRACT

PTENP1 is a processed pseudogene of the tumour suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN). It functions posttranscriptionally to regulate PTEN by acting as a sponge for microRNAs that target PTEN. PTENP1 therefore functions as a competitive endogenous RNA (ceRNA), competing with PTEN for binding of microRNAs (miRNA) and thereby modulating PTEN cellular abundance. Studies of the overexpression of PTENP1 all confirm its oncosuppressive function to be mediated through the suppression of cell proliferation, induction of apoptosis, and inhibition of cell migration and invasion of cancer cells of differing types. These oncosuppressive functions are a direct consequence of miRNA binding by PTENP1 and the subsequent liberation of PTEN from miRNA induced suppression. In this chapter, we will focus initially on the description of a high efficiency transient transfection method to introduce and overexpress PTENP1 in the cell type of interest, followed by accurate methodologies to measure transfection efficiency by flow cytometry. We will then continue to describe two methods to analyze cell proliferation, namely the CCK-8 assay and Click-iT® EdU assay. Due to commonalities in the manifestation of the oncosuppressive effects of PTENP1, mediated through its role as a ceRNA, the methods presented in this chapter will have wide applicability to a variety of different cell types.


Subject(s)
MicroRNAs/genetics , PTEN Phosphohydrolase/metabolism , Pseudogenes , Tumor Suppressor Proteins/agonists , 3' Untranslated Regions/genetics , Animals , Binding, Competitive , Cell Count , Cell Division , Cell Line, Tumor , Cloning, Molecular/methods , Colorimetry/methods , DNA Replication , Flow Cytometry/methods , Fluorescent Dyes , Humans , Microscopy, Fluorescence , PTEN Phosphohydrolase/genetics , Plasmids/genetics , Pseudogenes/genetics , Staining and Labeling/methods , Transfection/methods , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
10.
iScience ; 24(4): 102379, 2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33981968

ABSTRACT

Dicer knockout mouse models demonstrated a key role for microRNAs in pancreatic ß-cell function. Studies to identify specific microRNA(s) associated with human (pro-)endocrine gene expression are needed. We profiled microRNAs and key pancreatic genes in 353 human tissue samples. Machine learning workflows identified microRNAs associated with (pro-)insulin transcripts in a discovery set of islets (n = 30) and insulin-negative tissues (n = 62). This microRNA signature was validated in remaining 261 tissues that include nine islet samples from individuals with type 2 diabetes. Top eight microRNAs (miR-183-5p, -375-3p, 216b-5p, 183-3p, -7-5p, -217-5p, -7-2-3p, and -429-3p) were confirmed to be associated with and predictive of (pro-)insulin transcript levels. Use of doxycycline-inducible microRNA-overexpressing human pancreatic duct cell lines confirmed the regulatory roles of these microRNAs in (pro-)endocrine gene expression. Knockdown of these microRNAs in human islet cells reduced (pro-)insulin transcript abundance. Our data provide specific microRNAs to further study microRNA-mRNA interactions in regulating insulin transcription.

11.
Cells ; 9(10)2020 10 02.
Article in English | MEDLINE | ID: mdl-33023100

ABSTRACT

Previously, we used a lentiviral vector to deliver furin-cleavable human insulin (INS-FUR) to the livers in several animal models of diabetes using intervallic infusion in full flow occlusion (FFO), with resultant reversal of diabetes, restoration of glucose tolerance and pancreatic transdifferentiation (PT), due to the expression of beta (ß)-cell transcription factors (ß-TFs). The present study aimed to determine whether we could similarly reverse diabetes in the non-obese diabetic (NOD) mouse using an adeno-associated viral vector (AAV) to deliver INS-FUR ± the ß-TF Pdx1 to the livers of diabetic mice. The traditional AAV8, which provides episomal expression, and the hybrid AAV8/piggyBac that results in transgene integration were used. Diabetic mice that received AAV8-INS-FUR became hypoglycaemic with abnormal intraperitoneal glucose tolerance tests (IPGTTs). Expression of ß-TFs was not detected in the livers. Reversal of diabetes was not achieved in mice that received AAV8-INS-FUR and AAV8-Pdx1 and IPGTTs were abnormal. Normoglycaemia and glucose tolerance were achieved in mice that received AAV8/piggyBac-INS-FUR/FFO. Definitive evidence of PT was not observed. This is the first in vivo study using the hybrid AAV8/piggyBac system to treat Type 1 diabetes (T1D). However, further development is required before the system can be used for gene therapy of T1D.


Subject(s)
Diabetes Mellitus, Experimental/genetics , Genetic Therapy/methods , Insulin/metabolism , Animals , Humans , Mice , Mice, Inbred NOD
12.
Article in English | MEDLINE | ID: mdl-31615872

ABSTRACT

Germline alterations of the tumor suppressor PTEN have been extensively characterized in patients with PTEN hamartoma tumor syndromes, encompassing subsets of Cowden syndrome, Bannayan-Riley-Ruvalcaba syndrome, Proteus and Proteus-like syndromes, as well as autism spectrum disorder. Studies have shown an increase in the risk of developing specific cancer types in the presence of a germline PTEN mutation. Furthermore, outside of the familial setting, somatic variants of PTEN occur in numerous malignancies. Here we introduce and discuss the prospect of moving toward a systems pathology approach for PTEN diagnostics, incorporating clinical and molecular pathology data with the goal of improving the clinical management of patients with a PTEN mutation. Detection of a germline PTEN mutation can inform cancer surveillance and in the case of somatic mutation, have value in predicting disease course. Given that PTEN functions in the PI3K/AKT/mTOR pathway, identification of a PTEN mutation may highlight new therapeutic opportunities and/or inform therapeutic choices.


Subject(s)
Neoplasms/genetics , PTEN Phosphohydrolase/genetics , Autism Spectrum Disorder/genetics , Biomarkers, Tumor/genetics , Genes, Tumor Suppressor , Genetic Testing , Germ-Line Mutation , Hamartoma Syndrome, Multiple/genetics , Molecular Targeted Therapy/methods , PTEN Phosphohydrolase/metabolism , Phosphatidylinositol 3-Kinases
13.
PLoS One ; 14(7): e0220013, 2019.
Article in English | MEDLINE | ID: mdl-31318955

ABSTRACT

Due to their ease of isolation, gene modification and tumor-homing properties, mesenchymal stem cells (MSCs) are an attractive cellular vehicle for the delivery of toxic suicide genes to a variety of cancers in pre-clinical models. In addition, the incorporation of suicide genes in stem cell-derived cell replacement therapies improves their safety profile by permitting graft destruction in the event of unexpected tumorigeneses or unwanted differentiation. Due to the functional requirement of ATP for the Firefly luciferase gene Luc2 to produce light, luciferase-based reporting of cytotoxicity can be engineered into potential cell therapies. Consequently, we nucleofected mammalian expression plasmids containing both the Luc2 and the yeast fusion cytosine deaminase uracil phosphoribosyltransferase (CDUPRT) genes for expression in murine MSCs to assess luciferase as a reporter of suicide gene cytotoxicity, and MSC as vehicles of suicide gene therapy. In vitro bioluminescence imaging (BLI) showed that following the addition of the non-toxic prodrug fluorocytosine (5-FC), CDUPRT-expressing MSCs displayed enhanced cytotoxicity in comparison to Luc2 reporter MSC controls. This study demonstrates the utility of luciferase as a reporter of CDUPRT-mediated cytotoxicity in murine MSC using BLI.


Subject(s)
Gene Expression , Genes, Reporter , Genes, Transgenic, Suicide , Luciferases/genetics , Mesenchymal Stem Cells/metabolism , Animals , Biomarkers , Cell Line , Immunophenotyping , Luciferases/metabolism , Mesenchymal Stem Cells/cytology , Mice
14.
Methods Mol Biol ; 2029: 197-214, 2019.
Article in English | MEDLINE | ID: mdl-31273744

ABSTRACT

Lentiviral vectors are the method of choice for stable gene modification of a variety of cell types. However, the efficiency with which they transduce target cells varies significantly, in particular their typically poor capacity to transduce primary stem cells. Here we describe the isolation and enrichment of murine bone-marrow mesenchymal stem cells (MSCs) via fluorescence-activated cell sorting (FACS); the cloning, production, and concentration of high-titer second generation lentiviral vectors via combined tangential flow filtration (TFF) and ultracentrifugation; and the subsequent high-efficiency gene modification of MSCs into insulin-producing cells via overexpression of the furin-cleavable human insulin (INS-FUR) gene.


Subject(s)
Lentivirus/genetics , Mesenchymal Stem Cells/virology , Animals , Bone Marrow/virology , Cell Line , Female , Flow Cytometry/methods , Genetic Vectors/genetics , HEK293 Cells , Humans , Insulin/genetics , Mice , Mice, Inbred NOD , NIH 3T3 Cells , Transduction, Genetic/methods
15.
Stem Cells Int ; 2019: 1395301, 2019.
Article in English | MEDLINE | ID: mdl-30956666

ABSTRACT

Combinatorial gene and cell therapy as a means of generating surrogate ß-cells has been investigated for the treatment of type 1 diabetes (T1D) for a number of years with varying success. One of the limitations of current cell therapies for T1D is the inability to generate sufficient quantities of functional transplantable insulin-producing cells. Due to their impressive immunomodulatory properties, in addition to their ease of expansion and genetic modification ex vivo, mesenchymal stem cells (MSCs) are an attractive alternative source of adult stem cells for regenerative medicine. To overcome the aforementioned limitation of current therapies, we assessed the utility of ex vivo expanded bone marrow-derived murine MSCs for their persistence in immune-competent and immune-deficient animal models and their ability to differentiate into surrogate ß-cells. CD45-/Ly6+ murine MSCs were isolated from the bone marrow of nonobese diabetic (NOD) mice and nucleofected to express the bioluminescent protein, Firefly luciferase (Luc2). The persistence of a subcutaneous (s.c.) transplant of Luc2-expressing MSCs was assessed in immune-competent (NOD) (n = 4) and immune-deficient (NOD/Scid) (n = 4) animal models of diabetes. Luc2-expressing MSCs persisted for 2 and 12 weeks, respectively, in NOD and NOD/Scid mice. Ex vivo expanded MSCs were transduced with the HMD lentiviral vector (MOI = 10) to express furin-cleavable human insulin (INS-FUR) and murine NeuroD1 and Pdx1. This was followed by the characterization of pancreatic transdifferentiation via reverse transcriptase polymerase chain reaction (RT-PCR) and static and glucose-stimulated insulin secretion (GSIS). INS-FUR-expressing MSCs were assessed for their ability to reverse diabetes after transplantation into streptozotocin- (STZ-) diabetic NOD/Scid mice (n = 5). Transduced MSCs did not undergo pancreatic transdifferentiation, as determined by RT-PCR analyses, lacked glucose responsiveness, and upon transplantation did not reverse diabetes. The data suggest that ex vivo expanded MSCs lose their multipotent differentiation potential and may be more useful as gene therapy targets prior to expansion.

16.
Biomark Insights ; 13: 1177271918812467, 2018.
Article in English | MEDLINE | ID: mdl-30546256

ABSTRACT

Atherosclerosis is the underlying cause of most myocardial infarction (MI) and ischaemic stroke episodes. An early sign of atherosclerosis is hypertrophy of the arterial wall. It is known that increased intima media thickness (IMT) is a non-invasive marker of arterial wall alteration, which can easily be assessed in the carotid arteries by high-resolution B-mode ultrasound. Similarly, the other key element of MI and ischaemic strokes is the N-methyl-D-aspartate (NMDA) receptor which is an ionotropic glutamate receptor that mediates the vast majority of excitatory neurotransmission in the brain. NMDA activation requires the binding of both glutamate and a coagonist like D-serine to its glycine site. A special enzyme, serine racemase (SR), is required for the conversion of L-serine into D-serine, and alterations in SR activities lead to a variety of physiological and pathological conditions ranging from synaptic plasticity to ischemia, MI, and stroke. The amount of D-serine available for the activation of glutamatergic signalling is largely determined by SR and we have developed ways to estimate its levels in human blood samples and correlate it with the IMT. This research based short communication describes our pilot study, which clearly suggests that there is a direct relationship between the SR, D-serine, and IMT. In this article, we will discuss whether the activity of SR can determine the future consequences resulting from vascular pathologies such as MI and stroke.

17.
Biomark Insights ; 13: 1177271918786931, 2018.
Article in English | MEDLINE | ID: mdl-30038486

ABSTRACT

BACKGROUND: Heart rate variability (HRV) is a non-invasive measure of the function of the autonomic nervous system, and its dynamic nature may provide a means through which stroke and its associated complications may be predicted, monitored, and managed. OBJECTIVE: The objective of this review is to identify and provide a critique on the most recent uses of HRV in stroke diagnosis/management and highlight areas that warrant further research. METHODS: The MEDLINE, CINAHL, and OVID MEDLINE databases were canvassed using a systematic search strategy, for articles investigating the use of HRV in stroke diagnosis and management. Initial paper selections were based on title alone, and final paper inclusion was informed by a full-text critical appraisal. RESULTS: The systematic search returned 98 records, of which 51 were unique. Following screening, 22 records were included in the final systematic review. The included papers provided some information regarding predicting incident stroke, which largely seems to be best predicted by time- and frequency-domain HRV parameters. Furthermore, post-stroke complications and functionality are similarly predicted by time- and frequency-domain parameters, as well as non-linear parameters in some instances. CONCLUSIONS: Current research provides good evidence that HRV parameters may have utility as a biomarker for stroke and for post-stroke complications and/or functionality. Future research would benefit from the integration of non-linear, and novel parameters, the hybridisation of HRV parameters, and the expansion of the utilisation of predictive regression and hazard modelling.

18.
J Gene Med ; 20(5): e3017, 2018 05.
Article in English | MEDLINE | ID: mdl-29578255

ABSTRACT

BACKGROUND: Gene therapy is one treatment that may ultimately cure type 1 diabetes. We have previously shown that the introduction of furin-cleavable human insulin (INS-FUR) to the livers in several animal models of diabetes resulted in the reversal of diabetes and partial pancreatic transdifferentiation of liver cells. The present study investigated whether streptozotocin-diabetes could be reversed in FRG mice in which chimeric mouse-human livers can readily be established and, in addition, whether pancreatic transdifferentiation occurred in the engrafted human hepatocytes. METHODS: Engraftment of human hepatocytes was confirmed by measuring human albumin levels. Following delivery of the empty vector or the INS-FUR vector to diabetic FRG mice, mice were monitored for weight and blood glucose levels. Intraperitoneal glucose tolerance tests (IPGTTs) were performed. Expression levels of pancreatic hormones and transcription factors were determined by a reverse transcriptase-polymerase chain reaction (RT-PCR) and immunohistochemistry. RESULTS: Diabetes was reversed for a period of 60 days (experimental endpoint) after transduction with INS-FUR. IPGTTs of the insulin-transduced animals were not significantly different from nondiabetic animals. Immunofluorescence microscopy revealed the expression of human albumin and insulin in transduced liver samples. Quantitative RT-PCR showed expression of human and mouse endocrine hormones and ß-cell transcription factors, indicating partial pancreatic transdifferentiation of mouse and human hepatocytes. Nonfasting human C-peptide levels were significantly higher than mouse levels, suggesting that transdifferentiated human hepatocytes made a significant contribution to the reversal of diabetes. CONCLUSIONS: These data show that human hepatocytes can be induced to undergo partial pancreatic transdifferentiation in vivo, indicating that the technology holds promise for the treatment of type 1 diabetes.


Subject(s)
Cell Transdifferentiation/genetics , Diabetes Mellitus, Experimental/therapy , Diabetes Mellitus, Type 1/therapy , Hepatocytes/metabolism , Insulin-Secreting Cells/metabolism , Insulin/metabolism , Liver/metabolism , Animals , Cell Transplantation/methods , Cells, Cultured , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Type 1/genetics , Disease Models, Animal , Hepatocytes/cytology , Humans , Insulin/genetics , Insulin-Secreting Cells/cytology , Lentivirus/genetics , Liver/cytology , Mice , Transplantation, Heterologous
19.
Mol Cancer ; 17(1): 37, 2018 02 19.
Article in English | MEDLINE | ID: mdl-29455665

ABSTRACT

Regulation of the PI-3 kinase (PI3K)/Akt signalling pathway is essential for maintaining the integrity of fundamental cellular processes, cell growth, survival, death and metabolism, and dysregulation of this pathway is implicated in the development and progression of cancers. Receptor tyrosine kinases (RTKs) are major upstream regulators of PI3K/Akt signalling. The phosphatase and tensin homologue (PTEN), a well characterised tumour suppressor, is a prime antagonist of PI3K and therefore a negative regulator of this pathway. Loss or inactivation of PTEN, which occurs in many tumour types, leads to overactivation of RTK/PI3K/Akt signalling driving tumourigenesis. Cellular PTEN levels are tightly regulated by a number of transcriptional, post-transcriptional and post-translational regulatory mechanisms. Of particular interest, transcription of the PTEN pseudogene, PTENP1, produces sense and antisense transcripts that exhibit post-transcriptional and transcriptional modulation of PTEN expression respectively. These additional levels of regulatory complexity governing PTEN expression add to the overall intricacies of the regulation of RTK/PI-3 K/Akt signalling. This review will discuss the regulation of oncogenic PI3K signalling by PTEN (the regulator) with a focus on the modulatory effects of the sense and antisense transcripts of PTENP1 on PTEN expression, and will further explore the potential for new therapeutic opportunities in cancer treatment.


Subject(s)
Neoplasms/metabolism , PTEN Phosphohydrolase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Animals , Antineoplastic Agents/therapeutic use , Humans , MicroRNAs/genetics , Neoplasms/drug therapy , PTEN Phosphohydrolase/genetics , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics
20.
Int J Mol Sci ; 18(9)2017 Sep 02.
Article in English | MEDLINE | ID: mdl-28869494

ABSTRACT

Sphingosine kinase (SphK) is a lipid enzyme that maintains cellular lipid homeostasis. Two SphK isozymes, SphK1 and SphK2, are expressed from different chromosomes and several variant isoforms are expressed from each of the isozymes, allowing for the multi-faceted biological diversity of SphK activity. Historically, SphK1 is mainly associated with oncogenicity, however in reality, both SphK1 and SphK2 isozymes possess oncogenic properties and are recognized therapeutic targets. The absence of mutations of SphK in various cancer types has led to the theory that cancer cells develop a dependency on SphK signaling (hyper-SphK signaling) or "non-oncogenic addiction". Here we discuss additional theories of SphK cellular mislocation and aberrant "dicing and splicing" as contributors to cancer cell biology and as key determinants of the success or failure of SphK/S1P (sphingosine 1 phosphate) based therapeutics.


Subject(s)
Gene Expression Regulation, Neoplastic , Multigene Family , Neoplasms/etiology , Neoplasms/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , RNA Splicing , Animals , Disease Models, Animal , Evolution, Molecular , Humans , Isoenzymes , Lysophospholipids/metabolism , Neoplasms/drug therapy , Neoplasms/pathology , Protein Transport , Receptors, Lysosphingolipid/metabolism , Signal Transduction , Sphingosine/analogs & derivatives , Sphingosine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...