Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Radioact ; 234: 106625, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33957486

ABSTRACT

Molten Salt Reactors (MSRs) are one of six Generation IV reactor designs currently under development around the world. Because of the unique operating conditions of MSRs, which include molten fuel and the continuous removal of gaseous fission products during operation, work was performed to model the production of activation and fission products and analyze the potential impact of emissions on the International Monitoring System (IMS) of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Simulations were performed to predict the production of IMS-relevant radionuclides in four MSR designs operating under two scenarios: (1) a sealed reactor with releases only during operational shutdown, and (2) continuous reprocessing or sparging of the fuel salt. From these production estimates the radioxenon and radioiodine signatures were extracted and compared to three current reactor designs (Boiling Water Reactor, Pressurized Water Reactor, High-Power Channel-Type Reactor). In cases where continuous reprocessing of the fuel salt occurred, both the radioxenon and radioiodine signatures were nearly indistinguishable from a nuclear explosion. Estimates were also made of the potential emission rate of radioxenon for three reactor designs and it was found that MSRs have the potential to emit radioxenon isotopes at a rate of 1015-8×1016 Bq/d for 133Xe, which may adversely affect nuclear explosion monitoring, if no abatement is used. An assessment was made of activation products using a candidate fuel salt (FLiBe) mixed with corrosion products for the Thorium Molten Salt Reactor (TMSR-LF1).


Subject(s)
Air Pollutants, Radioactive , Radiation Monitoring , Air Pollutants, Radioactive/analysis , Iodine Radioisotopes , Isotopes , Xenon Radioisotopes/analysis
2.
J Environ Radioact ; 234: 106622, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33965293

ABSTRACT

Molten salt reactors (MSRs) are gaining support as many countries look for ways to increase power generation and replace aging nuclear energy production facilities. MSRs have inherently safe designs, are scalable in size, can burn transuranic wastes from traditional solid fuel nuclear reactors, can store excess heat in thermal reservoirs for water desalination, and can be used to produce medical isotopes as part of the real-time liquid-fuel recycling process. The ability to remove 135Xe in real time from the fuel improves the power production in an MSR because 135Xe is the most significant neutron-absorbing isotope generated by nuclear fission. Xenon-135, and other radioactive gases, are removed by sparging the fuel with an inert gas while the liquid fuel is recirculated from the reactor inner core through the heat exchangers. Without effective abatement technologies, large amounts of radioactive gas could be released during the sparging process. This work examines the potential impact of radioxenon releases on samplers used by the International Monitoring System (IMS) to detect nuclear explosions. Atmospheric transport simulations from seven hypothetical MSRs on different continents were used to evaluate the holdup time needed before release of radioxenon so IMS samplers would register few detections. Abatement technologies that retain radioxenon isotopes for at least 120 d before their release will be needed to mitigate the impacts from a molten salt breeder reactor used to replace a nuclear power plant. A holdup time of about 150 d is needed to reduce emissions to the average level of current nuclear power plants.


Subject(s)
Air Pollutants, Radioactive , Radiation Monitoring , Air Pollutants, Radioactive/analysis , Isotopes , Nuclear Power Plants , Nuclear Reactors , Xenon Radioisotopes/analysis
3.
Inorg Chem ; 51(10): 5660-70, 2012 May 21.
Article in English | MEDLINE | ID: mdl-22372556

ABSTRACT

The molecular structure of the tungsten-benzylidyne complex trans-W(≡CPh)(dppe)(2)Cl (1; dppe = 1,2-bis(diphenylphosphino)ethane) in the singlet (d(xy))(2) ground state and luminescent triplet (d(xy))(1)(π*(WCPh))(1) excited state (1*) has been studied using X-ray transient absorption spectroscopy, X-ray crystallography, and density functional theory (DFT) calculations. Molecular-orbital considerations suggest that the W-C and W-P bond lengths should increase in the excited state because of the reduction of the formal W-C bond order and decrease in W→P π-backbonding, respectively, between 1 and 1*. This latter conclusion is supported by comparisons among the W-P bond lengths obtained from the X-ray crystal structures of 1, (d(xy))(1)-configured 1(+), and (d(xy))(2) [W(CPh)(dppe)(2)(NCMe)](+) (2(+)). X-ray transient absorption spectroscopic measurements of the excited-state structure of 1* reveal that the W-C bond length is the same (within experimental error) as that determined by X-ray crystallography for the ground state 1, while the average W-P/W-Cl distance increases by 0.04 Å in the excited state. The small excited-state elongation of the W-C bond relative to the M-E distortions found for M(≡E)L(n) (E = O, N) compounds with analogous (d(xy))(1)(π*(ME))(1) excited states is due to the π conjugation within the WCPh unit, which lessens the local W-C π-antibonding character of the π*(WCPh) lowest unoccupied molecular orbital (LUMO). These conclusions are supported by DFT calculations on 1 and 1*. The similar core bond distances of 1, 1(+), and 1* indicates that the inner-sphere reorganization energy associated with ground- and excited-state electron-transfer reactions is small.

4.
Inorg Chem ; 49(13): 5777-9, 2010 Jul 05.
Article in English | MEDLINE | ID: mdl-20521796

ABSTRACT

The new zinc porphyrin/tungsten alkylidyne dyad Zn(TPP)-C[triple bond]CC(6)H(4)C[triple bond]W(dppe)(2)Cl (1) possesses novel photophysical properties that arise from a tunable excited-state triplet-triplet equilibrium between the porphyrin and tungsten alkylidyne units. Dyad 1 exhibits (3)(d(xy) <-- pi*(WCR)) phosphorescence with a lifetime that is 20 times longer than that of the parent chromophore W(CC(6)H(4)CCPh)(dppe)(2)Cl (2). The triplet-triplet equilibrium can be tuned by the addition of ligands to the Zn center, resulting in phosphorescence lifetimes for 1(L) that are up to 1300 times longer than that of 2. The "lifetime reservoir" effect exhibited by 1(L) is approximately 1 order of magnitude larger than previously reported examples of the phenomenon.

5.
Inorg Chem ; 45(17): 7004-9, 2006 Aug 21.
Article in English | MEDLINE | ID: mdl-16903760

ABSTRACT

A series of new bulky allyl terpyridyl-ytterbium complexes have been synthesized to determine the effect of allyl ligands on the internal charge-transfer process that exists in these materials. Compared to the pentamethylcyclopentadienyl-ytterbocene compound Cp*2Yb(tpyCN) (nu(C(triple bond)N) = 2172 cm(-1)), the symmetrically substituted allyl complex [1,3-(SiMe3)2C3H3]2Yb(tpyCN) possesses a markedly lowered C(triple bond)N frequency of 2130 cm(-1). Furthermore, the electronic nature of these bulky allyl complexes can be tuned, as demonstrated by the C(triple bond)N frequency of the asymmetric derivatives [1-(SiMe3)C3H4]2Yb(tpyCN) and [1-(SiPh3)-3-(SiMe3)C3H3]2Yb(tpyCN) (2171 and 2164 cm(-1), respectively). The differences in these frequencies can be attributed to differences in the ligands' steric and electronic character. Single-crystal X-ray characterization of [1,3-(SiMe3)2C3H3]2Yb(tpy) reveals that the allyl moiety possesses shorter Yb-C and Yb-N bond distances than the Cp* analogue. The magnetic susceptibility data for [1,3-(SiMe3)2C3H3]2Yb(tpy) departs dramatically from the Curie law, with a room-temperature magnetic moment of 2.95 mu(B).

6.
J Org Chem ; 69(6): 2153-63, 2004 Mar 19.
Article in English | MEDLINE | ID: mdl-15058965

ABSTRACT

Reaction of the N-toluenesulfonyl derivatives of (S)-alanine, phenylalanine, and valine (4-6) with PhPCl(2) gave in high yield the 4-methyl, benzyl, and isopropyl derivatives (7-9) of 2-phenyl-1-p-toluenesulfonyl-1,3,2-oxazaphospholidin-5-one. The ratios of the (2S,4S)/(2R,4S) diastereomers (cis/trans isomers) were 1:1, 2:1, and 10:1 for the methyl, benzyl, and isopropyl derivatives 7a,b, 8a,b, and 9a,b, respectively. For 7a,b, both isomers could be crystallized, but for the others only the major isomers were isolable. The X-ray crystal structure of 9a shows that the isopropyl and phenyl groups are mutually cis and that the tolyl moiety is oriented s-trans to both the isopropyl and phenyl groups. Reaction of 6 with Cl(2)PCH(2)CH(2)PCl(2) (10) gave a 56:38:7 mixture of the cis/cis, cis/trans, and trans/trans diphosphorus heterocycles 11a-c. The major isomer could be crystallized and isolated free of the other diastereomers. Reaction of 6 with EtPCl(2) gave a 6:1 mixture of cis/trans isomers of the ethyl-substituted heterocycles 12a,b as an inseparable oil but allowed confirmation of the structure of 11a. Slow epimerization at phosphorus may occur by inversion but more likely by ring opening/closure, since 7b, 9a, and 11a give rise upon standing in solution to mixtures containing starting material and 7a, 9b, and 11b, respectively, along with the free amino acid derivatives 4 and 6. The NMR spectra, and in particular the coupling constants between the alpha-hydrogen atom of the amino acid moiety and phosphorus, were used to establish the identities of the cis and trans isomers. Reaction of 9a with (THF)W(CO)(5) gave the phosphorus-ligated adduct (9a)W(CO)(5) (13), and the IR spectrum of this complex shows that 9a is a strongly electron-withdrawing ligand. The geometry of the sulfonamide moiety is discussed in detail, as are the (1)H NMR coupling constants. The data are consistent with the presence of little steric interaction between the cis isopropyl and phosphorus substituent in 9a, 11a, and 12a and orientation of the tolyl moiety s-cis to the isopropyl group in 9b, 12b, and 13.


Subject(s)
Amino Acids/chemistry , Phosphorus Compounds/chemical synthesis , Catalysis , Crystallography, X-Ray , Ethylamines/chemistry , Heterocyclic Compounds/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure , Organometallic Compounds/chemistry , Phosphines/chemical synthesis , Stereoisomerism , Sulfonamides/chemistry , Tosyl Compounds/chemistry
8.
Inorg Chem ; 35(19): 5453-5459, 1996 Sep 11.
Article in English | MEDLINE | ID: mdl-11666730

ABSTRACT

Reaction of N,N'-bis(tolylsulfonyl)-1,2-diaminoethane with PhPCl(2) gives in 62% yield the phosphonous diamide 2-phenyl-1,3-bis(p-tolylsulfonyl)-1,3,2-diazaphospholidine (4, "TosL") and with Ph(2)PCl in 43% yield the diphosphinous amide N,N'-bis(diphenylphosphino)-N,N'-bis(p-tolylsulfonyl)-1,2-ethanediamine (5, "diTosL"). Reaction of 4 with (THF)W(CO)(5) gives (TosL)W(CO)(5) (6) in 77% yield, and reaction of 5 with trans-BrW(CO)(4)NO gives cis, cis, trans-(diTosL)W(CO)(2)(NO)Br (8) in 86% yield. The IR, (13)C NMR, and (31)P NMR spectra of 4, 5, 6, and 8 are compared to those of a variety of compounds including LW(CO)(5) (L = PMe(3), PPh(3), PPh(NEt(2))(2), P(OMe)(3), P(CF(3))(3)), L(2)W(CO)(2)(NO)Br (L(2) = Ar(2)PCH(2)CH(2)PAr(2) (Ar = Ph (diphos), C(6)F(5) (diphos-F(20))), (CH(3)CN)(2)), and the free ligands as appropriate. The IR data are interpreted to suggest a relative ordering of ligand acceptor ability of P(CF(3))(3) > 4 approximately P(OMe)(3) > PPh(3) approximately PPh(NEt(2))(2) and a relative ordering of ligand donor ability of PPh(NEt(2))(2) >/= P(OMe)(3) > PPh(3) > 4 > P(CF(3))(3). The chelating ligand diTosL is about as electron-withdrawing as diphos-F(20), on the basis of the IR data. The (31)P NMR data qualitatively support the conclusion that TosL and diTosL are highly electron-withdrawing ligands, on the basis of (1)J(PW). The (13)C data do not permit any such generalizations, although the spectra of the diphosphine ligands and adducts are of interest due to the observation of "virtual coupling" that surprisingly can be simulated only as ABX rather than AA'X spin-systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...