Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Nature ; 625(7995): 585-592, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38200309

ABSTRACT

Oncogene-induced replication stress generates endogenous DNA damage that activates cGAS-STING-mediated signalling and tumour suppression1-3. However, the precise mechanism of cGAS activation by endogenous DNA damage remains enigmatic, particularly given that high-affinity histone acidic patch (AP) binding constitutively inhibits cGAS by sterically hindering its activation by double-stranded DNA (dsDNA)4-10. Here we report that the DNA double-strand break sensor MRE11 suppresses mammary tumorigenesis through a pivotal role in regulating cGAS activation. We demonstrate that binding of the MRE11-RAD50-NBN complex to nucleosome fragments is necessary to displace cGAS from acidic-patch-mediated sequestration, which enables its mobilization and activation by dsDNA. MRE11 is therefore essential for cGAS activation in response to oncogenic stress, cytosolic dsDNA and ionizing radiation. Furthermore, MRE11-dependent cGAS activation promotes ZBP1-RIPK3-MLKL-mediated necroptosis, which is essential to suppress oncogenic proliferation and breast tumorigenesis. Notably, downregulation of ZBP1 in human triple-negative breast cancer is associated with increased genome instability, immune suppression and poor patient prognosis. These findings establish MRE11 as a crucial mediator that links DNA damage and cGAS activation, resulting in tumour suppression through ZBP1-dependent necroptosis.


Subject(s)
Cell Transformation, Neoplastic , MRE11 Homologue Protein , Nucleosomes , Nucleotidyltransferases , Humans , Cell Proliferation , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , DNA Damage , MRE11 Homologue Protein/metabolism , Necroptosis , Nucleosomes/metabolism , Nucleotidyltransferases/metabolism , Radiation, Ionizing , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Genomic Instability
2.
Semin Radiat Oncol ; 32(1): 29-41, 2022 01.
Article in English | MEDLINE | ID: mdl-34861993

ABSTRACT

Many cancer therapies, including radiotherapy, induce DSBs as the major driving mechanism for inducing cancer cell death. Thus, modulating DSB repair has immense potential for radiosensitization, although such interventions must be carefully designed to be tumor selective to ensure that normal tissue toxicities are not also increased. Here, we review mechanisms of error-prone DSB repair through a highly efficient process called end joining. There are two major pathways of end-joining repair: non-homologous end joining (NHEJ) and alternative end joining (a-EJ), both of which can be selectively upregulated in cancer and thus represent attractive therapeutic targets for radiosensitization. These EJ pathways each have therapeutically targetable pioneer factors - DNA-dependent protein kinase catalytic subunit (DNA-PKcs) for NHEJ and DNA Polymerase Theta (Pol θ) for a-EJ. We summarize the current status of therapeutic targeting of NHEJ and a-EJ to enhance the effects of radiotherapy - focusing on challenges that must be overcome and opportunities that require further exploration. By leveraging preclinical insights into mechanisms of altered DSB repair programs in cancer, selective radiosensitization through NHEJ and/or a-EJ targeting remains a highly attractive avenue for ongoing and future clinical investigation.


Subject(s)
DNA Breaks, Double-Stranded , Neoplasms , DNA End-Joining Repair , DNA Repair , Humans , Neoplasms/genetics , Neoplasms/radiotherapy , Radiation Tolerance
3.
Nucleic Acids Res ; 49(9): 5095-5105, 2021 05 21.
Article in English | MEDLINE | ID: mdl-33963863

ABSTRACT

Genome integrity and genome engineering require efficient repair of DNA double-strand breaks (DSBs) by non-homologous end joining (NHEJ), homologous recombination (HR), or alternative end-joining pathways. Here we describe two complementary methods for marker-free quantification of DSB repair pathway utilization at Cas9-targeted chromosomal DSBs in mammalian cells. The first assay features the analysis of amplicon next-generation sequencing data using ScarMapper, an iterative break-associated alignment algorithm to classify individual repair products based on deletion size, microhomology usage, and insertions. The second assay uses repair pathway-specific droplet digital PCR assays ('PathSig-dPCR') for absolute quantification of signature DSB repair outcomes. We show that ScarMapper and PathSig-dPCR enable comprehensive assessment of repair pathway utilization in different cell models, after a variety of experimental perturbations. We use these assays to measure the differential impact of DNA end resection on NHEJ, HR and polymerase theta-mediated end joining (TMEJ) repair. These approaches are adaptable to any cellular model system and genomic locus where Cas9-mediated targeting is feasible. Thus, ScarMapper and PathSig-dPCR allow for systematic fate mapping of a targeted DSB with facile and accurate quantification of DSB repair pathway choice at endogenous chromosomal loci.


Subject(s)
CRISPR-Associated Protein 9 , DNA Breaks, Double-Stranded , DNA Repair , Algorithms , Animals , Cell Line , DNA End-Joining Repair , DNA-Activated Protein Kinase/antagonists & inhibitors , Genetic Loci , High-Throughput Nucleotide Sequencing , Mice , Polymerase Chain Reaction , Recombinational DNA Repair
4.
Cell Rep ; 30(5): 1385-1399.e7, 2020 02 04.
Article in English | MEDLINE | ID: mdl-32023457

ABSTRACT

The Mre11-Rad50-Nbs1 complex is a DNA double-strand break sensor that mediates a tumor-suppressive DNA damage response (DDR) in cells undergoing oncogenic stress, yet the mechanisms underlying this effect are poorly understood. Using a genetically inducible primary mammary epithelial cell model, we demonstrate that Mre11 suppresses proliferation and DNA damage induced by diverse oncogenic drivers through a p53-independent mechanism. Breast tumorigenesis models engineered to express a hypomorphic Mre11 allele exhibit increased levels of oncogene-induced DNA damage, R-loop accumulation, and chromosomal instability with a characteristic copy number loss phenotype. Mre11 complex dysfunction is identified in a subset of human triple-negative breast cancers and is associated with increased sensitivity to DNA-damaging therapy and inhibitors of ataxia telangiectasia and Rad3 related (ATR) and poly (ADP-ribose) polymerase (PARP). Thus, deficiencies in the Mre11-dependent DDR drive proliferation and genome instability patterns in p53-deficient breast cancers and represent an opportunity for therapeutic exploitation.


Subject(s)
Carcinogenesis/pathology , DNA Damage , Genomic Instability , Tumor Suppressor Protein p53/metabolism , Animals , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Ataxia Telangiectasia Mutated Proteins/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Cells, Cultured , Chromosomal Instability , Epithelial Cells/metabolism , Gene Dosage , HEK293 Cells , Humans , MRE11 Homologue Protein/metabolism , Mammary Glands, Animal/pathology , Mice , Models, Biological , Oncogenes , Phenotype , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , R-Loop Structures
5.
NAR Cancer ; 2(4): zcaa038, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33385162

ABSTRACT

TP53 deficiency in cancer is associated with poor patient outcomes and resistance to DNA damaging therapies. However, the mechanisms underlying treatment resistance in p53-deficient cells remain poorly characterized. Using live cell imaging of DNA double-strand breaks (DSBs) and cell cycle state transitions, we show that p53-deficient cells exhibit accelerated repair of radiomimetic-induced DSBs arising in S phase. Low-dose DNA-dependent protein kinase (DNA-PK) inhibition increases the S-phase DSB burden in p53-deficient cells, resulting in elevated rates of mitotic catastrophe. However, a subset of p53-deficient cells exhibits intrinsic resistance to radiomimetic-induced DSBs despite DNA-PK inhibition. We show that p53-deficient cells under DNA-PK inhibition utilize DNA polymerase theta (Pol θ)-mediated end joining repair to promote their viability in response to therapy-induced DSBs. Pol θ inhibition selectively increases S-phase DSB burden after radiomimetic therapy and promotes prolonged G2 arrest. Dual inhibition of DNA-PK and Pol θ restores radiation sensitivity in p53-deficient cells as well as in p53-mutant breast cancer cell lines. Thus, combination targeting of DNA-PK- and Pol θ-dependent end joining repair represents a promising strategy for overcoming resistance to DNA damaging therapies in p53-deficient cancers.

6.
Nat Commun ; 10(1): 4286, 2019 09 19.
Article in English | MEDLINE | ID: mdl-31537809

ABSTRACT

Polymerase theta (Pol θ, gene name Polq) is a widely conserved DNA polymerase that mediates a microhomology-mediated, error-prone, double strand break (DSB) repair pathway, referred to as Theta Mediated End Joining (TMEJ). Cells with homologous recombination deficiency are reliant on TMEJ for DSB repair. It is unknown whether deficiencies in other components of the DNA damage response (DDR) also result in Pol θ addiction. Here we use a CRISPR genetic screen to uncover 140 Polq synthetic lethal (PolqSL) genes, the majority of which were previously unknown. Functional analyses indicate that Pol θ/TMEJ addiction is associated with increased levels of replication-associated DSBs, regardless of the initial source of damage. We further demonstrate that approximately 30% of TCGA breast cancers have genetic alterations in PolqSL genes and exhibit genomic scars of Pol θ/TMEJ hyperactivity, thereby substantially expanding the subset of human cancers for which Pol θ inhibition represents a promising therapeutic strategy.


Subject(s)
Breast Neoplasms/genetics , DNA End-Joining Repair/genetics , DNA-Directed DNA Polymerase/genetics , Aminoquinolines/toxicity , Animals , CRISPR-Cas Systems/genetics , Cell Line , DNA Breaks, Double-Stranded , DNA-Directed DNA Polymerase/metabolism , HEK293 Cells , Humans , Mice , Mitomycin/toxicity , Picolinic Acids/toxicity , DNA Polymerase theta
7.
NPJ Breast Cancer ; 3: 9, 2017.
Article in English | MEDLINE | ID: mdl-28649649

ABSTRACT

Genomic instability is a hallmark of breast cancer, contributes to tumor heterogeneity, and influences chemotherapy resistance. Although Gap 2 and mitotic checkpoints are thought to prevent genomic instability, the role of these checkpoints in breast cancer is poorly understood. Here, we assess the Gap 2 and mitotic checkpoint functions of 24 breast cancer and immortalized mammary epithelial cell lines representing four of the six intrinsic molecular subtypes of breast cancer. We found that patterns of cell cycle checkpoint deregulation were associated with the intrinsic molecular subtype of breast cancer cell lines. Specifically, the luminal B and basal-like cell lines harbored two molecularly distinct Gap 2/mitosis checkpoint defects (impairment of the decatenation Gap 2 checkpoint and the spindle assembly checkpoint, respectively). All subtypes of breast cancer cell lines examined displayed aberrant DNA synthesis/Gap 2/mitosis progression and the basal-like and claudin-low cell lines exhibited increased percentages of chromatid cohesion defects. Furthermore, a decatenation Gap 2 checkpoint gene expression signature identified in the cell line panel correlated with clinical outcomes in breast cancer patients, suggesting that breast tumors may also harbor defects in decatenation Gap 2 checkpoint function. Taken together, these data imply that pharmacological targeting of signaling pathways driving these phenotypes may lead to the development of novel personalized treatment strategies for the latter two subtypes which currently lack targeted therapeutic options because of their triple negative breast cancer status.

8.
Pigment Cell Melanoma Res ; 29(1): 68-80, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26437005

ABSTRACT

The objective of this study was to assess potential functional attenuation or inactivation of the intra-S checkpoint during melanoma development. Proliferating cultures of skin melanocytes, fibroblasts, and melanoma cell lines were exposed to increasing fluences of UVC and intra-S checkpoint responses were quantified. Melanocytes displayed stereotypic intra-S checkpoint responses to UVC qualitatively and quantitatively equivalent to those previously demonstrated in skin fibroblasts. In comparison with fibroblasts, primary melanocytes displayed reduced UVC-induced inhibition of DNA strand growth and enhanced degradation of p21Waf1 after UVC, suggestive of enhanced bypass of UVC-induced DNA photoproducts. All nine melanoma cell lines examined, including those with activating mutations in BRAF or NRAS oncogenes, also displayed proficiency in activation of the intra-S checkpoint in response to UVC irradiation. The results indicate that bypass of oncogene-induced senescence during melanoma development was not associated with inactivation of the intra-S checkpoint response to UVC-induced DNA replication stress.


Subject(s)
Melanocytes/cytology , Melanocytes/radiation effects , Melanoma/pathology , S Phase Cell Cycle Checkpoints/radiation effects , Ultraviolet Rays , Biomarkers/metabolism , Cell Line , Checkpoint Kinase 1 , DNA Damage , DNA Repair/radiation effects , DNA Replication/radiation effects , DNA-Directed DNA Polymerase/metabolism , Diploidy , Dose-Response Relationship, Radiation , Fibroblasts/radiation effects , Humans , Melanins/metabolism , Phosphorylation/radiation effects , Protein Kinases/metabolism , Pyrimidine Dimers/metabolism
9.
Cancers (Basel) ; 7(2): 1072-90, 2015 Jun 17.
Article in English | MEDLINE | ID: mdl-26091525

ABSTRACT

The oncogenic BRAF(V600E) mutation is common in melanomas as well as moles. The roles that this mutation plays in the early events in the development of melanoma are poorly understood. This study demonstrates that expression of BRAF(V600E) is not only clastogenic, but synergizes for clastogenesis caused by exposure to ultraviolet radiation in the 300 to 320 nM (UVB) range. Expression of BRAF(V600E) was associated with induction of Chk1 pS280 and a reduction in chromatin remodeling factors BRG1 and BAF180. These alterations in the Chk1 signaling pathway and SWI/SNF chromatin remodeling pathway may contribute to the clastogenesis and UVB sensitivity. These results emphasize the importance of preventing sunburns in children with developing moles.

10.
Oncotarget ; 6(2): 732-45, 2015 Jan 20.
Article in English | MEDLINE | ID: mdl-25544751

ABSTRACT

SWI/SNF complexes utilize BRG1 (also known as SMARCA4) or BRM (also known as SMARCA2) as alternative catalytic subunits with ATPase activity to remodel chromatin. These chromatin-remodeling complexes are required for mammalian development and are mutated in ~20% of all human primary tumors. Yet our knowledge of their tumor-suppressor mechanism is limited. To investigate the role of SWI/SNF complexes in the DNA-damage response (DDR), we used shRNAs to deplete BRG1 and BRM and then exposed these cells to a panel of 6 genotoxic agents. Compared to controls, the shRNA knockdown cells were hypersensitive to certain genotoxic agents that cause double-strand breaks (DSBs) associated with stalled/collapsed replication forks but not to ionizing radiation-induced DSBs that arise independently of DNA replication. These findings were supported by our analysis of DDR kinases, which demonstrated a more prominent role for SWI/SNF in the activation of the ATR-Chk1 pathway than the ATM-Chk2 pathway. Surprisingly, γH2AX induction was attenuated in shRNA knockdown cells exposed to a topoisomerase II inhibitor (etoposide) but not to other genotoxic agents including IR. However, this finding is compatible with recent studies linking SWI/SNF with TOP2A and TOP2BP1. Depletion of BRG1 and BRM did not result in genomic instability in a tumor-derived cell line but did result in nucleoplasmic bridges in normal human fibroblasts. Taken together, these results suggest that SWI/SNF tumor-suppressor activity involves a role in the DDR to attenuate replicative stress and genomic instability. These results may also help to inform the selection of chemotherapeutics for tumors deficient for SWI/SNF function.


Subject(s)
DNA Damage , DNA Helicases/genetics , Nuclear Proteins/genetics , Transcription Factors/genetics , Uterine Cervical Neoplasms/genetics , Cell Line, Tumor , Cell Survival/genetics , DNA Helicases/deficiency , Female , Gene Knockdown Techniques , HeLa Cells , Humans , Nuclear Proteins/deficiency , RNA, Small Interfering/genetics , Transcription Factors/deficiency
11.
Environ Mol Mutagen ; 55(6): 457-71, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24616037

ABSTRACT

A systems biology approach was applied to investigate the mechanisms of chromosomal instability in melanoma cell lines. Chromosomal instability was quantified using array comparative genomic hybridization to identify somatic copy number alterations (deletions and duplications). Primary human melanocytes displayed an average of 8.5 alterations per cell primarily representing known polymorphisms. Melanoma cell lines displayed 25 to 131 alterations per cell, with an average of 68, indicative of chromosomal instability. Copy number alterations included approximately equal numbers of deletions and duplications with greater numbers of hemizygous (-1,+1) alterations than homozygous (-2,+2). Melanoma oncogenes, such as BRAF and MITF, and tumor suppressor genes, such as CDKN2A/B and PTEN, were included in these alterations. Duplications and deletions were functional as there were significant correlations between DNA copy number and mRNA expression for these genes. Spectral karyotype analysis of three lines confirmed extensive chromosomal instability with polyploidy, aneuploidy, deletions, duplications, and chromosome rearrangements. Bioinformatic analysis identified a signature of gene expression that was correlated with chromosomal instability but this signature provided no clues to the mechanisms of instability. The signature failed to generate a significant (P = 0.105) prediction of melanoma progression in a separate dataset. Chromosomal instability was not correlated with elements of DNA damage response (DDR) such as radiosensitivity, nucleotide excision repair, expression of the DDR biomarkers γH2AX and P-CHEK2, nor G1 or G2 checkpoint function. Chromosomal instability in melanoma cell lines appears to influence gene function but it is not simply explained by alterations in the system of DDR.


Subject(s)
Chromosomal Instability/genetics , Melanoma/genetics , Systems Biology/methods , Cell Line, Tumor , Comparative Genomic Hybridization , Computational Biology , DNA Copy Number Variations/genetics , DNA Damage/genetics , DNA Damage/physiology , Humans , Karyotyping , Oncogenes/genetics
12.
Physiol Genomics ; 45(19): 907-16, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-23943852

ABSTRACT

Ataxia telangiectasia (AT) is a rare autosomal recessive disease caused by mutations in the ataxia telangiectasia-mutated gene (ATM). AT carriers with one mutant ATM allele are usually not severely affected although they carry an increased risk of developing cancer. There has not been an easy and reliable diagnostic method to identify AT carriers. Cell cycle checkpoint functions upon ionizing radiation (IR)-induced DNA damage and gene expression signatures were analyzed in the current study to test for differential responses in human lymphoblastoid cell lines with different ATM genotypes. While both dose- and time-dependent G1 and G2 checkpoint functions were highly attenuated in ATM-/- cell lines, these functions were preserved in ATM+/- cell lines equivalent to ATM+/+ cell lines. However, gene expression signatures at both baseline (consisting of 203 probes) and post-IR treatment (consisting of 126 probes) were able to distinguish ATM+/- cell lines from ATM+/+ and ATM-/- cell lines. Gene ontology (GO) and pathway analysis of the genes in the baseline signature indicate that ATM function-related categories, DNA metabolism, cell cycle, cell death control, and the p53 signaling pathway, were overrepresented. The same analyses of the genes in the IR-responsive signature revealed that biological categories including response to DNA damage stimulus, p53 signaling, and cell cycle pathways were overrepresented, which again confirmed involvement of ATM functions. The results indicate that AT carriers who have unaffected G1 and G2 checkpoint functions can be distinguished from normal individuals and AT patients by expression signatures of genes related to ATM functions.


Subject(s)
Ataxia Telangiectasia/genetics , Cell Cycle Checkpoints/genetics , Gene Expression Profiling , Cell Cycle Checkpoints/radiation effects , DNA Damage/genetics , DNA Damage/radiation effects , Gene Expression Regulation/radiation effects , Gene Ontology , Heterozygote , Humans , Radiation, Ionizing , Signal Transduction/genetics , Signal Transduction/radiation effects
13.
Cell Cycle ; 12(7): 1071-82, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23454897

ABSTRACT

As DNA damage checkpoints are barriers to carcinogenesis, G(2) checkpoint function was quantified to test for override of this checkpoint during melanomagenesis. Primary melanocytes displayed an effective G(2) checkpoint response to ionizing radiation (IR)-induced DNA damage. Thirty-seven percent of melanoma cell lines displayed a significant defect in G(2) checkpoint function. Checkpoint function was melanoma subtype-specific with "epithelial-like" melanoma lines, with wild type NRAS and BRAF displaying an effective checkpoint, while lines with mutant NRAS and BRAF displayed defective checkpoint function. Expression of oncogenic B-Raf in a checkpoint-effective melanoma attenuated G(2) checkpoint function significantly but modestly. Other alterations must be needed to produce the severe attenuation of G(2) checkpoint function seen in some BRAF-mutant melanoma lines. Quantitative trait analysis tools identified mRNA species whose expression was correlated with G(2) checkpoint function in the melanoma lines. A 165 gene signature was identified with a high correlation with checkpoint function (p < 0.004) and low false discovery rate (≤ 0.077). The G(2) checkpoint gene signature predicted G(2) checkpoint function with 77-94% accuracy. The signature was enriched in lysosomal genes and contained numerous genes that are associated with regulation of chromatin structure and cell cycle progression. The core machinery of the cell cycle was not altered in checkpoint-defective lines but rather numerous mediators of core machinery function were. When applied to an independent series of primary melanomas, the predictive G(2) checkpoint signature was prognostic of distant metastasis-free survival. These results emphasize the value of expression profiling of primary melanomas for understanding melanoma biology and disease prognosis.


Subject(s)
Melanocytes/metabolism , Melanoma/metabolism , Transcriptome , Cell Line , DNA Damage/radiation effects , G2 Phase Cell Cycle Checkpoints/radiation effects , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Humans , Melanocytes/cytology , Melanocytes/radiation effects , Melanoma/pathology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Radiation, Ionizing
14.
J Theor Biol ; 320: 159-69, 2013 Mar 07.
Article in English | MEDLINE | ID: mdl-23266715

ABSTRACT

A predictive mathematical model of the transition from the G2 phase in the cell cycle to mitosis (M) was constructed from the known interactions of the proteins that are thought to play significant roles in the G2 to M transition as well as the DNA damage- induced G2 checkpoint. The model simulates the accumulation of active cyclin B1/Cdk1 (MPF) complexes in the nucleus to activate mitosis, the inhibition of this process by DNA damage, and transport of component proteins between cytoplasm and nucleus. Interactions in the model are based on activities of individual phospho-epitopes and binding sites of proteins involved in G2/M. Because tracking phosphoforms leads to combinatorial explosion, we employ a rule-based approach using the BioNetGen software. The model was used to determine the effects of depletion or over-expression of selected proteins involved in the regulation of the G2 to M transition in the presence and absence of DNA damage. Depletion of Plk1 delayed mitotic entry and recovery from the DNA damage-induced G2 arrest and over-expression of MPF attenuated the DNA damage-induced G2 delay. The model recapitulates the G2 delay observed in the biological response to varying levels of a DNA damage signal. The model produced the novel prediction that depletion of pkMyt1 results in an abnormal biological state in which G2 cells with DNA damage accumulate inactive nuclear MPF. Such a detailed model may prove useful for predicting DNA damage G2 checkpoint function in cancer and, therefore, sensitivity to cancer therapy.


Subject(s)
Cell Nucleus/metabolism , DNA Damage , G2 Phase Cell Cycle Checkpoints , Mitosis , Models, Biological , Software , CDC2 Protein Kinase/genetics , CDC2 Protein Kinase/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Nucleus/genetics , Cyclin B1/genetics , Cyclin B1/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/therapy , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Signal Transduction/genetics , Polo-Like Kinase 1
15.
Cell Cycle ; 12(2): 332-45, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23255133

ABSTRACT

The ATR-dependent intra-S checkpoint protects DNA replication forks undergoing replication stress. The checkpoint is enforced by ATR-dependent phosphorylation of CHK1, which are mediated by the TIMELESS-TIPIN complex and CLASPIN. Although loss of checkpoint proteins is associated with spontaneous chromosomal instability, few studies have examined the contribution of these proteins to unchallenged DNA metabolism in human cells that have not undergone carcinogenesis or crisis. Furthermore, the TIMELESS-TIPIN complex and CLASPIN may promote replication fork protection independently of CHK1 activation. Normal human fibroblasts (NHF) were depleted of ATR, CHK1, TIMELESS, TIPIN or CLASPIN and chromosomal aberrations, DNA synthesis, activation of the DNA damage response (DDR) and clonogenic survival were evaluated. This work demonstrates in NHF lines from two individuals that ATR and CHK1 promote chromosomal stability by different mechanisms that depletion of CHK1 produces phenotypes that resemble more closely the depletion of TIPIN or CLASPIN than the depletion of ATR, and that TIMELESS has a distinct contribution to suppression of chromosomal instability that is independent of its heterodimeric partner, TIPIN. Therefore, ATR, CHK1, TIMELESS-TIPIN and CLASPIN have functions for preservation of intrinsic chromosomal stability that is separate from their cooperation for activation of the intra-S checkpoint response to experimentally induced replication stress. These data reveal a complex and coordinated program of genome maintenance enforced by proteins known for their intra-S checkpoint function.


Subject(s)
Cell Cycle Proteins/metabolism , Chromosome Aberrations , DNA Replication/physiology , Genomic Instability/physiology , Intracellular Signaling Peptides and Proteins/metabolism , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , S Phase Cell Cycle Checkpoints/physiology , Adaptor Proteins, Signal Transducing/deficiency , Adaptor Proteins, Signal Transducing/metabolism , Ataxia Telangiectasia Mutated Proteins , Blotting, Western , Carrier Proteins/metabolism , Cell Cycle Proteins/deficiency , Checkpoint Kinase 1 , DNA-Binding Proteins , Fibroblasts , Flow Cytometry , Humans , Intracellular Signaling Peptides and Proteins/deficiency , Likelihood Functions , Nuclear Proteins/deficiency , Nuclear Proteins/metabolism , Protein Kinases/deficiency , Protein Serine-Threonine Kinases/deficiency
16.
Pigment Cell Melanoma Res ; 25(4): 514-26, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22540896

ABSTRACT

Melanoma cell lines and normal human melanocytes (NHM) were assayed for p53-dependent G1 checkpoint response to ionizing radiation (IR)-induced DNA damage. Sixty-six percent of melanoma cell lines displayed a defective G1 checkpoint. Checkpoint function was correlated with sensitivity to IR with checkpoint-defective lines being radio-resistant. Microarray analysis identified 316 probes whose expression was correlated with G1 checkpoint function in melanoma lines (P≤0.007) including p53 transactivation targets CDKN1A, DDB2, and RRM2B. The 316 probe list predicted G1 checkpoint function of the melanoma lines with 86% accuracy using a binary analysis and 91% accuracy using a continuous analysis. When applied to microarray data from primary melanomas, the 316 probe list was prognostic of 4-yr distant metastasis-free survival. Thus, p53 function, radio-sensitivity, and metastatic spread may be estimated in melanomas from a signature of gene expression.


Subject(s)
G1 Phase Cell Cycle Checkpoints/genetics , Gene Expression Profiling , Melanoma/genetics , Skin Neoplasms/genetics , Tumor Suppressor Protein p53/metabolism , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , DNA Probes/metabolism , Gene Expression Regulation, Neoplastic , Humans , Melanocytes/metabolism , Melanocytes/pathology , Melanoma/diagnosis , Melanoma/pathology , Prognosis , Skin Neoplasms/diagnosis , Skin Neoplasms/pathology , Tumor Suppressor Protein p53/genetics
17.
Gene Regul Syst Bio ; 6: 55-66, 2012.
Article in English | MEDLINE | ID: mdl-22553421

ABSTRACT

This paper includes a conceptual framework for cell cycle modeling into which the experimenter can map observed data and evaluate mechanisms of cell cycle control. The basic model exhibits qualitative stability, meaning that regardless of magnitudes of system parameters its instances are guaranteed to be stable in the sense that all feasible trajectories converge to a certain trajectory. Qualitative stability can also be described by the signs of real parts of eigenvalues of the system matrix. On the biological side, the resulting model can be tuned to approximate experimental data pertaining to human fibroblast cell lines treated with ionizing radiation, with or without disabled DNA damage checkpoints. Together these properties validate a fundamental, first order systems view of cell dynamics. Classification Codes: 15A68.

18.
Cell Cycle ; 10(10): 1618-24, 2011 May 15.
Article in English | MEDLINE | ID: mdl-21508667

ABSTRACT

The Timeless-Tipin complex and Claspin are mediators of the ATR-dependent activation of Chk1 in the intra-S checkpoint response to stalled DNA replication forks. Tim-Tipin and Claspin also contribute to sister chromatid cohesion (SCC) in various organisms, likely through a replication-coupled process. Some models of the establishment of SCC posit that interactions between cohesin rings and replisomes could result in physiological replication stress requiring fork stabilization. The contributions of Timeless, Tipin, Claspin, Chk1 and ATR to SCC were investigated in genetically stable, human diploid fibroblast cell lines. Whereas Timeless, Tipin and Claspin showed similar contributions to UVC-induced activation of Chk1, siRNA-mediated knockdown of Timeless induced a 100-fold increase in sister chromatid discohesion, whereas the inductive effects of knocking down Tipin, Claspin and ATR were 4-20-fold. Knockdown of Chk1 did not significantly affect SCC. Consistent findings were obtained in two independently derived human diploid fibroblast lines and support a conclusion that SCC in human cells is strongly dependent on Timeless but independent of Chk1. Furthermore, the 10-fold difference in discohesion observed when depleting Timeless versus Tipin indicates that Timeless has a function in SCC that is independent of the Tim-Tipin complex, even though the abundance of Timeless is reduced when Tipin is targeted for depletion. A better understanding of how Timeless, Tipin and Claspin promote SCC will elucidate non-checkpoint functions of these proteins at DNA replication forks and inform models of the establishment of SCC.


Subject(s)
Carrier Proteins/metabolism , Cell Cycle Proteins/metabolism , Chromatids/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Fibroblasts/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Nuclear Proteins/metabolism , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Ataxia Telangiectasia Mutated Proteins , Carrier Proteins/antagonists & inhibitors , Carrier Proteins/genetics , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/genetics , Checkpoint Kinase 1 , DNA Replication , DNA-Binding Proteins , Humans , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/genetics , Metaphase , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/genetics , Protein Kinases/chemistry , Protein Kinases/genetics , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Ultraviolet Rays , Cohesins
19.
Cell Cycle ; 9(8): 1617-28, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-20372057

ABSTRACT

The decatenation G2 checkpoint is proposed to delay cellular progression from G2 into mitosis when intertwined daughter chromatids are insufficiently decatenated. Previous studies indicated that the ATM- and Rad3-related (ATR) checkpoint kinase, but not the ataxia telangiectasia-mutated (ATM) kinase, was required for decatenation G2 checkpoint function. Here, we show that the method used to quantify decatenation G2 checkpoint function can influence the identification of genetic requirements for the checkpoint. Normal human diploid fibroblast (NHDF) lines responded to the topoisomerase II (topo II) catalytic inhibitor ICRF-193 with a stringent G2 arrest and a reduction in the mitotic index. While siRNA-mediated depletion of ATR and CHEK1 increased the mitotic index in ICRF-193 treated NHDF lines, depletion of these proteins did not affect the mitotic entry rate, indicating that the decatenation G2 checkpoint was functional. These results suggest that ATR and CHEK1 are not required for the decatenation G2 checkpoint, but may influence mitotic exit after inhibition of topo II. A re-evaluation of ataxia telangiectasia (AT) cell lines using the mitotic entry assay indicated that ATM was required for the decatenation G2 checkpoint. Three NHDF cell lines responded to ICRF-193 with a mean 98% inhibition of the mitotic entry rate. Examination of the mitotic entry rates in AT fibroblasts upon treatment with ICRF-193 revealed a significantly attenuated decatenation G2 checkpoint response, with a mean 59% inhibition of the mitotic entry rate. In addition, a normal lymphoblastoid line exhibited a 95% inhibition of the mitotic entry rate after incubation with ICRF-193, whereas two AT lymphoblastoid lines displayed only 36% and 20% inhibition of the mitotic entry rate. Stable depletion of ATM in normal human fibroblasts with short hairpin RNA also attenuated decatenation G2 checkpoint function by an average of 40%. Western immunoblot analysis demonstrated that treatment with ICRF-193 induced ATM autophosphorylation and ATM-dependent phosphorylation of Ser15-p53 and Thr68 in Chk2, but no appreciable phosphorylation of Ser139-H2AX or Ser345-Chk1. The results suggest that inhibition of topo II induces ATM to phosphorylate selected targets that contribute to a G2 arrest independently of DNA damage.


Subject(s)
Cell Cycle Proteins/physiology , DNA-Binding Proteins/physiology , G2 Phase , Protein Serine-Threonine Kinases/physiology , Tumor Suppressor Proteins/physiology , Ataxia Telangiectasia Mutated Proteins , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line , Checkpoint Kinase 2 , DNA Topoisomerases, Type II/chemistry , DNA Topoisomerases, Type II/metabolism , DNA-Binding Proteins/metabolism , Diketopiperazines , Fibroblasts/drug effects , Fibroblasts/metabolism , Histones/metabolism , Humans , Mitosis , Phosphorylation , Piperazines/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Topoisomerase II Inhibitors/pharmacology , Tumor Suppressor Proteins/metabolism
20.
Cell Cycle ; 8(11): 1775-87, 2009 Jun 01.
Article in English | MEDLINE | ID: mdl-19411857

ABSTRACT

After treatment with ultraviolet radiation (UV), human fibroblasts that express the HPV type 16 E6 oncoprotein display defects in repair of cyclobutane pyrimidine dimers, hypersensitivity to inactivation of clonogenic survival and an inability to sustain DNA replication. To determine whether these effects are specific to depletion of p53 or inactivation of its function, fibroblast lines were constructed with ectopic expression of a dominant-negative p53 allele (p53-H179Q) to inactivate function or a short-hairpin RNA (p53-RNAi) to deplete expression of p53. Only the expression of HPV16E6 sensitized fibroblasts to UV or the chemical carcinogen, benzo[a]pyrene diolepoxide I (BPDE). Carcinogen-treated cells expressing p53-H179Q or p53-RNAi were resistant to inactivation of colony formation and did not suffer replication arrest. CHK1 is a key checkpoint kinase in the response to carcinogen-induced DNA damage. Control and p53-RNAi-expressing fibroblasts displayed phosphorylation of Ser345 on CHK1 45-120 min after carcinogen treatment with a return to near baseline phosphorylation by 6 h after treatment. HPV16E6-expressing fibroblasts displayed enhanced and sustained phosphorylation of CHK1. This was associated with enhanced phosphorylation of Thr68 on CHK2 and Ser139 on H2AX, both markers of severe replication stress and DNA double strand breaks. Incubation with the phosphatase inhibitor okadaic acid produced more phosphorylation of CHK1 in UV-treated HPV16E6-expressing cells than in p53-H179Q-expressing cells suggesting that HPV16E6 may interfere with the recovery of coupled DNA replication at replication forks that are stalled at [6-4]pyrimidine-pyrimidone photoproducts and BPDE-DNA adducts. The results indicate that HPV16E6 targets a protein or proteins other than p53 to deregulate the activity of CHK1 in carcinogen-damaged cells.


Subject(s)
Carcinogens/pharmacology , Fibroblasts/drug effects , Oncogene Proteins, Viral/metabolism , Protein Kinases/metabolism , Repressor Proteins/metabolism , Tumor Suppressor Protein p53/metabolism , Benzopyrenes/pharmacology , Checkpoint Kinase 1 , DNA Adducts/metabolism , DNA Damage , DNA Repair , Humans , Okadaic Acid/pharmacology , Phosphorylation , RNA Interference , Signal Transduction , Tumor Suppressor Protein p53/genetics , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...