Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
Appl Geochem ; 25(10): 1500-1509, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-21076621

ABSTRACT

Arsenic is a prevalent contaminant at US Superfund sites where remediation by pump and treat systems is often complicated by slow desorption of As from Fe and Al (hydr)oxides in aquifer solids. Chemical amendments that either compete with As for sorption sites or dissolve Fe and Al (hydr)oxides can increase As mobility and improve pump and treat remediation efficiency. The goal of this work was to determine optimal amendments for improving pump and treat at As contaminated sites such as the Vineland Chemical Co. Superfund site in southern New Jersey. Extraction and column experiments were performed using As contaminated aquifer solids (81 ± 1 mg/kg), site groundwater, and either phosphate (NaH(2)PO(4)·H(2)O) or oxalic acid (C(2)H(2)O(4)·2H(2)O). In extraction experiments, phosphate mobilized between 11% and 94% of As from the aquifer solids depending on phosphate concentration and extraction time (1 mM-1 M; 1-24 h) and oxalic acid mobilized between 38 and 102% depending on oxalic acid concentration and extraction time (1-400 mM; 1-24 h). In column experiments, phosphate additions induced more As mobilization in the first few pore volumes but oxalic acid was more effective at mobilizing As overall and at lower amendment concentrations. At the end of the laboratory column experiments, 48% of As had been mobilized from the aquifer sediments with 100 mM phosphate and 88% had been mobilized with 10 mM oxalic acid compared with 5% with ambient groundwater alone. Furthermore, simple extrapolations based on pore volumes suggest that chemical treatments could lower the time necessary for clean up at the Vineland site from 600 a with ambient groundwater alone to potentially as little as 4 a with 10 mM oxalic acid.

2.
Environ Sci Technol ; 39(22): 8606-13, 2005 Nov 15.
Article in English | MEDLINE | ID: mdl-16329197

ABSTRACT

Mechanisms controlling arsenic partitioning between sediment, groundwater, porewaters, and surface waters were investigated at the Vineland Chemical Company Superfund site in southern New Jersey. Extensive inorganic and organic arsenic contamination at this site (historical total arsenic > 10 000 microg L(-1) or > 130 microM in groundwater) has spread downstream to the Blackwater Branch, Maurice River, and Union Lake. Stream discharge was measured in the Blackwater Branch, and water samples and sediment cores were obtained from both the stream and the lake. Porewaters and sediments were analyzed for arsenic speciation as well as total arsenic, iron, manganese, and sulfur, and they indicate that geochemical processes controlling mobility of arsenic were different in these two locations. Arsenic partitioning in the Blackwater Branch was consistent with arsenic primarily being controlled by sulfur, whereas in Union Lake, the data were consistent with arsenic being controlled largely by iron. Stream discharge and arsenic concentrations indicate that despite large-scale groundwater extraction and treatment, > 99% of arsenic transport away from the site results from continued discharge of high arsenic groundwater to the stream, rather than remobilization of arsenic in stream sediments. Changing redox conditions would be expected to change arsenic retention on sediments. In sulfur-controlled stream sediments, more oxic conditions could oxidize arsenic-bearing sulfide minerals, thereby releasing arsenic to porewaters and streamwaters; in iron-controlled lake sediments, more reducing conditions could release arsenic from sediments via reductive dissolution of arsenic-bearing iron oxides.


Subject(s)
Arsenic/analysis , Environmental Exposure , Fresh Water/chemistry , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis , Arsenic/metabolism , Chemical Industry , Iron , New Jersey , Sulfur , Water Movements
3.
J Urban Health ; 82(1): 33-42, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15738337

ABSTRACT

The United States Clean Air Act Amendments of 1990 reflected increasing concern about potential effects of low-level airborne metal exposure on a wide array of illnesses. Here we summarize results demonstrating that the New York City (NYC) subway system provides an important microenvironment for metal exposures for NYC commuters and subway workers and also describe an ongoing pilot study of NYC transit workers' exposure to steel dust. Results from the TEACH (Toxic Exposure Assessment, a Columbia and Harvard) study in 1999 of 41 high-school students strongly suggest that elevated levels of iron, manganese, and chromium in personal air samples were due to exposure to steel dust in the NYC subway. Airborne concentrations of these three metals associated with fine particulate matter were observed to be more than 100 times greater in the subway environment than in home indoor or outdoor settings in NYC. While there are currently no known health effects at the airborne levels observed in the subway system, the primary aim of the ongoing pilot study is to ascertain whether the levels of these metals in the subway air affect concentrations of these metals or related metabolites in the blood or urine of exposed transit workers, who due to their job activities could plausibly have appreciably higher exposures than typical commuters. The study design involves recruitment of 40 transit workers representing a large range in expected exposures to steel dust, the collection of personal air samples of fine particulate matter, and the collection of blood and urine samples from each monitored transit worker.


Subject(s)
Air Pollutants/analysis , Dust/analysis , Occupational Exposure/analysis , Railroads , Steel/analysis , Biomarkers/blood , Biomarkers/urine , Chromium/blood , Chromium/urine , Environmental Exposure/analysis , Environmental Monitoring , Humans , Iron/blood , Iron/urine , Manganese/blood , Manganese/urine , New York City , Risk Assessment , Steel/toxicity , Students , Workforce
4.
Bull World Health Organ ; 80(9): 732-7, 2002.
Article in English | MEDLINE | ID: mdl-12378292

ABSTRACT

OBJECTIVE: To survey tube wells and households in Araihazar upazila, Bangladesh, to set the stage for a long-term epidemiological study of the consequences of chronic arsenic exposure. METHODS: Water samples and household data were collected over a period of 4 months in 2000 from 4997 contiguous tube wells serving a population of 55000, the position of each well being determined to within +/- 30 m using Global Positioning System receivers. Arsenic concentrations were determined by graphite-furnace atomic-absorption spectrometry. In addition, groundwater samples collected every 2 weeks for an entire year from six tube wells were analysed for arsenic by high-resolution inductively coupled plasma-mass spectrometry. FINDINGS: Half of the wells surveyed in Araihazar had been installed in the previous 5 years; 94% were privately owned. Only about 48% of the surveyed wells supplied water with an arsenic content below 50 micro g/l, the current Bangladesh standard for drinking-water. Similar to other regions of Bangladesh and West Bengal, India, the distribution of arsenic in Araihazar is spatially highly variable (range: 5-860 micro g/l) and therefore difficult to predict. Because of this variability, however, close to 90% of the inhabitants live within 100 m of a safe well. Monitoring of six tube wells currently meeting the 50 micro g/l standard showed no indication of a seasonal cycle in arsenic concentrations coupled to the hydrological cycle. This suggests that well-switching is a viable option in Araihazar, at least for the short term. CONCLUSIONS: Well-switching should be more systematically encouraged in Araihazar and many other parts of Bangladesh and West Bengal, India. Social barriers to well-switching need to be better understood and, if possible, overcome.


Subject(s)
Arsenic/analysis , Environmental Exposure/analysis , Water Pollutants, Chemical/analysis , Water Supply/analysis , Arsenic Poisoning/epidemiology , Arsenic Poisoning/prevention & control , Bangladesh/epidemiology , Humans , Spectrophotometry, Atomic
6.
Environ Sci Technol ; 33(5): 657-662, 1999 Mar 01.
Article in English | MEDLINE | ID: mdl-21850150

ABSTRACT

It is generally assumed that declining atmospheric lead concentrations in urban centers during the 1970s and 1980s were due almost entirely to the progressive introduction of unleaded gasoline. However, most environmental data are from monitoring programs that began only two to three decades ago, which limits their usefulness. Here, trace metal and radionuclide data from sediment cores in Central Park Lake provide a record of atmospheric pollutant deposition in New York City through the 20th century, which suggests that leaded gasoline combustion was not the dominant source of atmospheric lead for NYC. Lead deposition rates, normalized to known Pb-210 atmospheric influxes, were extremely high, reaching maximum values (>70 µg cm(-2) yr(-1)) from the late 1930s to early 1960s, decades before maximum emissions from combustion of leaded gasoline. Temporal trends of lead, zinc, and tin deposition derived from the lake sediments closely resemble the history of solid waste incineration in New York City. Furthermore, widespread use of solid waste incinerators in the United States and Europe over the last century suggests that solid waste incineration may have provided the dominant source of atmospheric lead and several other metals to many urban centers.

SELECTION OF CITATIONS
SEARCH DETAIL
...