Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Biotechnol J ; 11(9): 1126-34, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23953646

ABSTRACT

Modern agriculture demands crops carrying multiple traits. The current paradigm of randomly integrating and sorting independently segregating transgenes creates severe downstream breeding challenges. A versatile, generally applicable solution is hereby provided: the combination of high-efficiency targeted genome editing driven by engineered zinc finger nucleases (ZFNs) with modular 'trait landing pads' (TLPs) that allow 'mix-and-match', on-demand transgene integration and trait stacking in crop plants. We illustrate the utility of nuclease-driven TLP technology by applying it to the stacking of herbicide resistance traits. We first integrated into the maize genome an herbicide resistance gene, pat, flanked with a TLP (ZFN target sites and sequences homologous to incoming DNA) using WHISKERS™-mediated transformation of embryogenic suspension cultures. We established a method for targeted transgene integration based on microparticle bombardment of immature embryos and used it to deliver a second trait precisely into the TLP via cotransformation with a donor DNA containing a second herbicide resistance gene, aad1, flanked by sequences homologous to the integrated TLP along with a corresponding ZFN expression construct. Remarkably, up to 5% of the embryo-derived transgenic events integrated the aad1 transgene precisely at the TLP, that is, directly adjacent to the pat transgene. Importantly and consistent with the juxtaposition achieved via nuclease-driven TLP technology, both herbicide resistance traits cosegregated in subsequent generations, thereby demonstrating linkage of the two independently transformed transgenes. Because ZFN-mediated targeted transgene integration is becoming applicable across an increasing number of crop species, this work exemplifies a simple, facile and rapid approach to trait stacking.


Subject(s)
Endonucleases/genetics , Gene Targeting/methods , Genome, Plant/genetics , Herbicide Resistance , Herbicides/pharmacology , Zea mays/genetics , Crops, Agricultural , Endonucleases/metabolism , Genetic Linkage , Phenotype , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Transgenes , Zinc Fingers
2.
Nature ; 459(7245): 437-41, 2009 May 21.
Article in English | MEDLINE | ID: mdl-19404259

ABSTRACT

Agricultural biotechnology is limited by the inefficiencies of conventional random mutagenesis and transgenesis. Because targeted genome modification in plants has been intractable, plant trait engineering remains a laborious, time-consuming and unpredictable undertaking. Here we report a broadly applicable, versatile solution to this problem: the use of designed zinc-finger nucleases (ZFNs) that induce a double-stranded break at their target locus. We describe the use of ZFNs to modify endogenous loci in plants of the crop species Zea mays. We show that simultaneous expression of ZFNs and delivery of a simple heterologous donor molecule leads to precise targeted addition of an herbicide-tolerance gene at the intended locus in a significant number of isolated events. ZFN-modified maize plants faithfully transmit these genetic changes to the next generation. Insertional disruption of one target locus, IPK1, results in both herbicide tolerance and the expected alteration of the inositol phosphate profile in developing seeds. ZFNs can be used in any plant species amenable to DNA delivery; our results therefore establish a new strategy for plant genetic manipulation in basic science and agricultural applications.


Subject(s)
Biotechnology/methods , Deoxyribonucleases/chemistry , Deoxyribonucleases/metabolism , Gene Targeting/methods , Genome, Plant/genetics , Zea mays/genetics , Zinc Fingers , Deoxyribonucleases/genetics , Food, Genetically Modified , Genes, Plant/genetics , Herbicide Resistance/genetics , Herbicides/pharmacology , Heredity , Inositol Phosphates/metabolism , Mutagenesis, Site-Directed/methods , Plants, Genetically Modified , Recombination, Genetic/genetics , Reproducibility of Results
3.
Article in English | MEDLINE | ID: mdl-16978895

ABSTRACT

The interrenal gland (adrenocortical homolog) of elasmobranchs produces a unique steroid, 1alpha-hydroxycorticosterone (1alpha-B). The synthesis of this and most other steroids requires both cholesterol side chain cleavage (CYP11A) and 3beta-hydroxysteroid dehydrogenase (HSD3). To facilitate the study of elasmobranch steroidogenesis, we isolated complementary DNAs encoding CYP11A and HSD3 from the freshwater stingray Potamotrygon motoro. The P. motoro CYP11A (2182 bp total length) and HSD3 (2248 bp total length) cDNAs harbor open reading frames that encode proteins of 542 and 376 amino acids (respectively) that are similar (CYP11A: 39-61% identical; HSD3: 36-53% identical) to their homologs from other vertebrates. In molecular phylogenetic analysis, P. motoro CYP11A segregates with CYP11A proteins (and not with related CYP11B proteins) and P. motoro HSD3 segregates with steroidogenic HSD3 proteins from other fishes. CYP11A and HSD3 mRNA is found only in interrenal and gonadal tissues, indicating de novo steroidogenesis is restricted to these tissues. Because 1alpha-B is thought to act in the elasmobranch response to hydromineral disturbances, we examined the effect of adapting P. motoro to 10 ppt seawater on mRNAs encoding steroidogenic genes. The P. motoro response to this salinity challenge does not include interrenal hypertrophy or an increase in the levels of interrenal CYP11A, HSD3 or steroidogenic acute regulatory protein (StAR) mRNA. This study is the first to isolate full length cDNAs encoding elasmobranch CYP11A and HSD3 and the first to examine the regulation of steroidogenic genes in elasmobranch interrenal cells.


Subject(s)
17-Hydroxysteroid Dehydrogenases/genetics , Cholesterol Side-Chain Cleavage Enzyme/genetics , Skates, Fish/genetics , Amino Acid Motifs , Amino Acid Sequence , Animals , Cholesterol Side-Chain Cleavage Enzyme/chemistry , Corticosterone/analogs & derivatives , Corticosterone/biosynthesis , DNA, Complementary , Female , Fresh Water , Gene Expression Regulation, Enzymologic , Interrenal Gland/enzymology , Male , Molecular Sequence Data , Organ Specificity , Phylogeny , Reverse Transcriptase Polymerase Chain Reaction , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...