Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 5441, 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37673926

ABSTRACT

We explore, experimentally and theoretically, the emergence of coherent coupled oscillations and synchronization between a pair of non-Hermitian, stochastic, opto-mechanical oscillators, levitated in vacuum. Each oscillator consists of a polystyrene microsphere trapped in a circularly polarized, counter-propagating Gaussian laser beam. Non-conservative, azimuthal forces, deriving from inhomogeneous optical spin, push the micro-particles out of thermodynamic equilibrium. For modest optical powers each particle shows a tendency towards orbital circulation. Initially, their stochastic motion is weakly correlated. As the power is increased, the tendency towards orbital circulation strengthens and the motion of the particles becomes highly correlated. Eventually, centripetal forces overcome optical gradient forces and the oscillators undergo a collective Hopf bifurcation. For laser powers exceeding this threshold, a pair of limit cycles appear, which synchronize due to weak optical and hydrodynamic interactions. In principle, arrays of such Non-Hermitian elements can be arranged, paving the way for opto-mechanical topological materials or, possibly, classical time crystals. In addition, the preparation of synchronized states in levitated optomechanics could lead to new and robust sensors or alternative routes to the entanglement of macroscopic objects.

2.
Sci Adv ; 6(23): eaaz9858, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32537499

ABSTRACT

We demonstrate an effect whereby stochastic, thermal fluctuations combine with nonconservative optical forces to break detailed balance and produce increasingly coherent, apparently deterministic motion for a vacuum-trapped particle. The particle is birefringent and held in a linearly polarized Gaussian optical trap. It undergoes oscillations that grow rapidly in amplitude as the air pressure is reduced, seemingly in contradiction to the equipartition of energy. This behavior is reproduced in direct simulations and captured in a simplified analytical model, showing that the underlying mechanism involves nonsymmetric coupling between rotational and translational degrees of freedom. When parametrically driven, these self-sustained oscillators exhibit an ultranarrow linewidth of 2.2 µHz and an ultrahigh mechanical quality factor in excess of 2 × 108 at room temperature. Last, nonequilibrium motion is seen to be a generic feature of optical vacuum traps, arising for any system with symmetry lower than that of a perfect isotropic microsphere in a Gaussian trap.

3.
Nano Lett ; 19(1): 342-352, 2019 01 09.
Article in English | MEDLINE | ID: mdl-30525673

ABSTRACT

Silicon nanowires are held and manipulated in controlled optical traps based on counter-propagating beams focused by low numerical aperture lenses. The double-beam configuration compensates light scattering forces enabling an in-depth investigation of the rich dynamics of trapped nanowires that are prone to both optical and hydrodynamic interactions. Several polarization configurations are used, allowing the observation of optical binding with different stable structure as well as the transfer of spin and orbital momentum of light to the trapped silicon nanowires. Accurate modeling based on Brownian dynamics simulations with appropriate optical and hydrodynamic coupling confirms that this rich scenario is crucially dependent on the non-spherical shape of the nanowires. Such an increased level of optical control of multiparticle structure and dynamics open perspectives for nanofluidics and multi-component light-driven nanomachines.

4.
Nano Lett ; 17(6): 3485-3492, 2017 06 14.
Article in English | MEDLINE | ID: mdl-28535340

ABSTRACT

Multiple scattering of light induces structured interactions, or optical binding forces, between collections of small particles. This has been extensively studied in the case of microspheres. However, binding forces are strongly shape dependent: here, we turn our attention to dielectric nanowires. Using a novel numerical model we uncover rich behavior. The extreme geometry of the nanowires produces a sequence of stationary and dynamic states. In linearly polarized light, thermally stable ladder-like structures emerge. Lower symmetry, sagittate arrangements can also arise, whose configurational asymmetry unbalances the optical forces leading to nonconservative, translational motion. Finally, the addition of circular polarization drives a variety of coordinated rotational states whose dynamics expose fundamental properties of optical spin. These results suggest that optical binding can provide an increased level of control over the positions and motions of nanoparticles, opening new possibilities for driven self-organization and heralding a new field of self-assembling optically driven micromachines.

5.
Nano Lett ; 16(7): 4181-8, 2016 07 13.
Article in English | MEDLINE | ID: mdl-27280642

ABSTRACT

We measure, by photonic torque microscopy, the nonconservative rotational motion arising from the transverse components of the radiation pressure on optically trapped, ultrathin silicon nanowires. Unlike spherical particles, we find that nonconservative effects have a significant influence on the nanowire dynamics in the trap. We show that the extreme shape of the trapped nanowires yields a transverse component of the radiation pressure that results in an orbital rotation of the nanowire about the trap axis. We study the resulting motion as a function of optical power and nanowire length, discussing its size-scaling behavior. These shape-dependent nonconservative effects have implications for optical force calibration and optomechanics with levitated nonspherical particles.

6.
Chem Sci ; 7(1): 274-285, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-28758004

ABSTRACT

The surface composition and surface tension of aqueous droplets can influence key aerosol characteristics and processes including the critical supersaturation required for activation to form cloud droplets in the atmosphere. Despite its fundamental importance, surface tension measurements on droplets represent a considerable challenge owing to their small volumes. In this work, we utilize holographic optical tweezers to study the damped surface oscillations of a suspended droplet (<10 µm radius) following the controlled coalescence of a pair of droplets and report the first contactless measurements of the surface tension and viscosity of droplets containing only 1-4 pL of material. An advantage of performing the measurement in aerosol is that supersaturated solute states (common in atmospheric aerosol) may be accessed. For pairs of droplets starting at their equilibrium surface composition, surface tensions and viscosities are consistent with bulk equilibrium values, indicating that droplet surfaces respond to changes in surface area on microsecond timescales and suggesting that equilibrium values can be assumed for growing atmospheric droplets. Furthermore, droplet surfaces are shown to be rapidly modified by trace species thereby altering their surface tension. This equilibration of droplet surface tension to the local environmental conditions is illustrated for unknown contaminants in laboratory air and also for droplets exposed to gas passing through a water-ethanol solution. This approach enables precise measurements of surface tension and viscosity over long time periods, properties that currently are poorly constrained.

7.
Opt Express ; 23(24): 30991-1009, 2015 Nov 30.
Article in English | MEDLINE | ID: mdl-26698730

ABSTRACT

We present a microfluidic chip in Polymethyl methacrylate (PMMA) for optical trapping of particles in an 80µm wide microchannel using two counterpropagating single-mode beams. The trapping fibers are separated from the sample fluid by 70µm thick polymer walls. We calculate the optical forces that act on particles flowing in the microchannel using wave optics in combination with non-sequential ray-tracing and further mathematical processing. Our results are compared with a theoretical model and the Mie theory. We use a novel fabrication process that consists of a premilling step and ultraprecision diamond tooling for the manufacturing of the molds and double-sided hot embossing for replication, resulting in a robust microfluidic chip for optical trapping. In a proof-of-concept demonstration, we show the trapping capabilities of the hot embossed chip by trapping spherical beads with a diameter of 6µm, 8µm and 10µm and use the power spectrum analysis of the trapped particle displacements to characterize the trap strength.


Subject(s)
Colloids/chemistry , Colloids/isolation & purification , Fiber Optic Technology/instrumentation , Lab-On-A-Chip Devices , Optical Tweezers , Polymethyl Methacrylate/chemistry , Equipment Design , Equipment Failure Analysis , Microspheres
8.
Opt Lett ; 37(19): 4038-40, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-23027271

ABSTRACT

A wave optics numerical analysis of the force and torque on a semicylindrical optical wing is presented. Comparisons with a recently reported ray optics analysis indicate good agreement when the radius is large compared with the wavelength of light, as expected. Surprisingly, we find that the dominant rotationally stable angle of attack at α≈-15° is relatively invariant to changes in radius and refractive index. However, the torsional stiffness at the equilibrium point is found to increase, approximately, as the cubic power of the radius. Quasi-resonant internal modes of light produce complex size-dependent variations of the angle and magnitude of the optical lift force.

9.
Opt Express ; 19(17): 16526-41, 2011 Aug 15.
Article in English | MEDLINE | ID: mdl-21935017

ABSTRACT

The accuracy of the discrete dipole approximation (DDA) for computing forces and torques in optical trapping experiments is discussed in the context of dielectric spheres and a range of low symmetry particles, including particles with geometric anisotropy (spheroids), optical anisotropy (birefringent spheres) and structural inhomogeneity (core-shell spheres). DDA calculations are compared with the results of exact T-matrix theory. In each case excellent agreement is found between the two methods for predictions of optical forces, torques, trap stiffnesses and trapping positions. Since the DDA lends itself to calculations on particles of arbitrary shape, the study is augmented by considering more general systems which have received recent experimental interest. In particular, optical forces and torques on low symmetry letter-shaped colloidal particles, birefringent quartz cylinders and biphasic Janus particles are computed and the trapping behaviour of the particles is discussed. Very good agreement is found with the available experimental data. The efficiency of the DDA algorithm and methods of accelerating the calculations are also discussed.

10.
J Opt Soc Am A Opt Image Sci Vis ; 28(5): 850-8, 2011 May 01.
Article in English | MEDLINE | ID: mdl-21532697

ABSTRACT

Optical traps can be characterized in terms of two simple parameters: the stiffness, given by the gradient of the force at mechanical equilibrium, and the strength, as expressed by the maximum restoring force available for displacement in a given direction. We present numerical calculations of these quantities for dielectric microrods of varying radius and refractive index held horizontally in pairs of holographically generated Gaussian beams. The resulting variations are seen to be influenced by optical resonances, as well as by the relative sizes of the beam waist and rod diameter. In addition, it is shown that trapping in these systems is sensitive to the polarization state of the incident field; i.e., for certain rods, trapping will occur for beams polarized perpendicular to the long axis of the rod, but not for beams polarized parallel to the long axis. Finally, friction coefficients are evaluated and used to estimate the maximum rates at which the rods may be dragged through the ambient medium.

11.
J Opt Soc Am A Opt Image Sci Vis ; 27(9): 2061-71, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-20808417

ABSTRACT

A theoretical examination of off-axial trapping in non-paraxial Laguerre-Gaussian beams is presented for both the Rayleigh and Mie regimes. It is well known that the force acting on a particle may be divided into a term proportional to the intensity gradient and another representing the scattering force. The latter term may be further sub-divided into a dissipative radiation force and a term dependent on the electric field gradient. For Rayleigh particles in Laguerre-Gaussian beams, it is shown that the field gradient term contributes exactly half of the scattering force. This may be compared with a plane wave, in which it makes zero contribution. The off-axis trapping positions for spheres with radii varying from 0.1 to 0.5 mum and a range of refractive indices are calculated numerically in the Mie regime, using a conjugate gradient approach. Azimuthal forces and orbital torques are presented for particles in their trapping positions, for beams with different orbital angular momentum and polarization states. The components of a "spin" torque, acting through the center of the particle, are also computed for absorbing particles in the Mie regime.

12.
J Opt Soc Am A Opt Image Sci Vis ; 27(6): 1255-64, 2010 Jun 01.
Article in English | MEDLINE | ID: mdl-20508694

ABSTRACT

Holographic optical tweezing permits the trapping of objects with less than spherical symmetry in appropriately distributed sets of beams thereby permitting control to be exerted over both the orientation and position. In contrast to the familiar case of the singly trapped sphere, the stiffness and strength of such compound traps will have rotational components. We investigate this for a simple model system consisting of multiply trapped dielectric cylinder. Optically induced forces and torques are evaluated using the discrete dipole approximation and the resulting trap stiffnesses are presented. A variety of configurations of trapping beams are considered. Hydrodynamic resistances for the cylinder are also calculated and used to estimate translation and rotation rates. A number of conclusions are reached concerning the optimal trapping and dragging conditions for the rod. In particular, it is clear that it is advantageous to drag a rod in a direction perpendicular rather than parallel to its length. In addition, it is observed that the polarization of the incident light plays a significant role. Finally, it is noted that the non-conservative nature of the optical force field manifests itself directly in the stiffness of the trapped cylinder. The consequences of this last point are discussed.

13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(3 Pt 1): 031141, 2010 Sep.
Article in English | MEDLINE | ID: mdl-21230059

ABSTRACT

It is well known that optical force fields are not conservative. This has important consequences for the thermal motion of optically trapped dielectric spheres. In particular, the spheres do not reach thermodynamic equilibrium. Instead, a steady state is achieved in which the stochastic trajectory contains an underlying deterministic bias toward cyclic motion, and the energy of the sphere deviates from that implied by the equipartition theorem. Such effects are second order and only observed at low trap powers when the sphere is able to explore regions of the trap beyond the linear regime. Analogous effects may be expected for particles of less than spherical symmetry. However, in this case the effects are first order and depend on the linear term in the optical force field. As such they are not suppressed by increases in beam power, although the frequency and amplitude of the cyclic motion will be affected by it. In this paper, we present an analysis of the first-order nonconservative behavior of nonspherical particles in optical traps. The analysis is supported by optical force calculations and brownian dynamics simulations of dielectric microrods held vertically in gaussian optical traps.

14.
Nanotechnology ; 20(39): 395710, 2009 Sep 30.
Article in English | MEDLINE | ID: mdl-19726835

ABSTRACT

By holding a complex object in multiple optical traps, it may be harmonically bound with respect to both its position and its orientation. In this way a small probe, or nanotool, can be manipulated in three dimensions and used to measure and apply directed forces, in the manner of a scanning probe microscope. In this paper we evaluate the thermal motion of such a probe held in holographic optical tweezers, by solving the Langevin equation for the general case of a set of spherical vertices linked by cylindrical rods. The concept of a corner frequency, familiar from the case of an optically trapped sphere, is appropriately extended to represent a set of characteristic frequencies given by the eigenvalues of the product of the stiffness matrix and the inverse hydrodynamic resistance matrix of the tool. These eigenvalues may alternatively be interpreted as inverses of a set of characteristic relaxation times for the system. The approach is illustrated by reference to a hypothetical tool consisting of a triangular arrangement of spheres with a lateral probe. The characteristic frequencies and theoretical resolution of the device are derived; variations of these quantities with tool size and orientation and with the optical power distribution, are also considered.

15.
J Opt Soc Am A Opt Image Sci Vis ; 26(3): 625-38, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19252660

ABSTRACT

It is well known that Laguerre-Gaussian beams carry angular momentum and that this angular momentum has a mechanical effect when such beams are incident on particles whose refractive indices differ from those of the background medium. Under conditions of tight focusing, intensity gradients arise that are sufficiently large to trap micrometer-sized particles, permitting these mechanical effects to be observed directly. In particular, when the particles are spherical and absorbing, they rotate steadily at a rate that is directly proportional to the theoretical angular momentum flux of the incident beam. We note that this behavior is peculiar to absorbing spheres. For arbitrary, axially placed particles the induced torque for rotation angle zeta is shown to be Gammaz=Asin(2zeta+delta)+B, where A, B, and delta are constants that are determined by the mechanisms coupling optical and mechanical angular momentum. The resulting behavior need not be directly related to the total angular momentum in the beam but can, nonetheless, be understood in terms of an appropriate torque density. This observation is illustrated by calculations of the torque induced in optically and geometrically anisotropic particles using a T-matrix approach.

16.
J Opt Soc Am A Opt Image Sci Vis ; 26(1): 173-83, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19109614

ABSTRACT

It is well known that optical vortex beams carry orbital as well as spin angular momentum. This optical angular momentum can manifest itself mechanically, for example in tightly focused Laguerre-Gaussian beams, where trapped, weakly absorbing spheres rotate at a rate proportional to the total angular momentum carried by the beam. In the present paper we subject this system to a rigorous analysis involving expansions in vector spherical wave functions that culminates in a simple expression for the torque on the sphere. It is seen that, for large weakly absorbing spheres, the induced torque per unit power is independent of the detailed structure of the incident field, being a simple function of two indices that describe the helicity and polarization state of the beam, the relative refractive indices of the sphere and ambient medium, the absorption index of the sphere, and its radius. A number of relationships between the coefficients of these expansions are also developed.

17.
Opt Express ; 16(5): 2942-57, 2008 Mar 03.
Article in English | MEDLINE | ID: mdl-18542380

ABSTRACT

We present finite-difference time-domain (FDTD) calculations of the forces and torques on dielectric particles of various shapes, held in one or many Gaussian optical traps, as part of a study of the physical limitations involved in the construction of micro- and nanostructures using a dynamic holographic assembler (DHA). We employ a full 3-dimensional FDTD implementation, which includes a complete treatment of optical anisotropy. The Gaussian beams are sourced using a multipole expansion of a fifth order Davis beam. Force and torques are calculated for pairs of silica spheres in adjacent traps, for silica cylinders trapped by multiple beams and for oblate silica spheroids and calcite spheres in both linearly and circularly polarized beams. Comparisons are drawn between the magnitudes of the optical forces and the Van der Waals forces acting on the systems. The paper also considers the limitations of the FDTD approach when applied to optical trapping.


Subject(s)
Holography/methods , Imaging, Three-Dimensional/methods , Models, Theoretical , Nanoparticles/ultrastructure , Computer Simulation , Finite Element Analysis , Light , Scattering, Radiation
18.
J Opt Soc Am A Opt Image Sci Vis ; 24(2): 430-43, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17206258

ABSTRACT

The T matrix method is used to compute equilibrium positions and orientations for spheroidal particles trapped in Gaussian light beams. It is observed that there is a qualitative difference between the behavior of prolate and oblate ellipsoids in linearly polarized Gaussian beams; the former generally orient with the symmetry axis parallel to the beam except at very small particle sizes, while the latter orient with the symmetry axis perpendicular to the beam. In the presence of a circularly polarized beam, it is demonstrated that oblate ellipsoids will experience a torque about the beam axis. However, for a limited range of particle sizes, where the particle dimensions are comparable with the beam waist, the particles are predicted to rotate in a sense counter to the sense of rotation of the circular polarization. This unusual prediction is discussed in some detail.

19.
J Opt Soc Am A Opt Image Sci Vis ; 23(6): 1419-31, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16715161

ABSTRACT

Recent advances in dynamic holography have resulted in spatial light modulators capable of producing an almost limitless variety of field distributions from a single incident beam. Holographic assembly is a technique that exploits this capability to generate and control multiple foci that can be used to trap and manipulate nanoparticles. Although the forces associated with conventional optical tweezers are well understood, the effects arising from the more complicated interactions associated with holographic assembly are not. We present a general and flexible method, based on T matrix theory, for investigating these effects and use it to calculate the forces between particles in a variety of optical environments.

SELECTION OF CITATIONS
SEARCH DETAIL
...