Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 176
Filter
1.
J Bone Miner Res ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38959852

ABSTRACT

Intracellular phosphoinositide 3-kinase (PI3K) signaling is activated by multiple bone-active receptors. Genetic mutations activating PI3K signaling are associated with clinical syndromes of tissue overgrowth in multiple organs, often including the skeleton. Bone formation is increased by removing the PI3K inhibitor PTEN, but the effect of direct PI3K in the osteoblast lineage has not been reported. We introduced a known gain-of-function mutation in Pik3ca, the gene encoding the p110α catalytic subunit of PI3K, in osteocytes and late osteoblasts using the dentin matrix protein-1 Cre (Dmp1Cre) mouse and assessed the skeletal phenotype. Femur shape was grossly normal, but cortical thickness was significantly greater in both male and female Dmp1Cre.Pik3caH1047R mice, leading to almost doubled bone strength at 12 weeks of age. Both sexes had smaller marrow areas from 6 weeks of age. Female mice also exhibited greater cross sectional area, which continued to increase until 24 weeks of age, resulting in a further increase in bone strength. While both male and female mice had increased endocortical mineralizing surface, only female mice had increased periosteal mineralizing surface. The bone formed in the Dmp1Cre.Pik3caH1047R mice showed no increase in intracortical remodeling nor any defect in cortical bone consolidation. In contrast, on both endocortical and periosteal surfaces, there was a greater extent of lamellar bone formation with highly organized osteocyte networks extending along the entire surface at a greater thickness than in control mice. In conclusion, direct activation of PI3Kα in cells targeted by Dmp1Cre leads to high cortical bone mass and strength with abundant lamellar cortical bone in female and male mice with no increase in intracortical remodeling. This differs from the effect of PTEN deletion in the same cells, suggesting that activating PI3Kα in osteoblasts and osteocytes may be a more suitable target to promote formation of lamellar bone.


Patients with genetic activation of an enzyme called phosphoinositide-3 kinase (PI3K) have tissue overgrowth syndromes, where parts of the body become enlarged, sometimes including the skeleton. There are two types of mutations that cause these problems: one that directly causes the PI3K enzyme to be more active, or one that removes the normal brake on PI3K signaling (called PTEN). We studied the effect of directly activating PI3K enzyme specifically in osteoblasts (the cells that form bone) and osteocytes (osteoblasts that make a network inside the bone tissue itself). We found mice with these mutations formed normally shaped bones that were very strong because the outer shell was thicker than usual. In both male and female mice, it became thicker on the inside of the shell, but in female mice it also became thicker on the outside, making the bones even stronger over time. The new bone was well-organized bone, which likely helped make the increase in bone strength so profound. This is very different to what has previously been shown in mice with the other type of mutation in their bone forming cells; those mice had a shell that contained many large holes (pores). This indicates that directly stimulating PI3K enzyme is more beneficial for bone than removing the PTEN brake.

2.
J Bone Miner Res ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990205

ABSTRACT

Coupling, the mechanism that controls the sequence of events in bone remodelling, is a fundamental theory for understanding the way the skeleton changes throughout life. This review is an adapted version of the Louis V Avioli lecture, delivered at the Annual Scientific Meeting of the American Society of Bone and Mineral Research. It outlines the history of the coupling concept and details how coupling occurs within trabecular and cortical bone and describes its multiple contexts and the many mechanisms suggested to couple bone forming osteoblasts to the prior action of osteoclasts on the same bone surface. These mechanisms include signals produced at each stage of the remodelling sequence (resorption, reversal, and formation), such as factors released by osteoclasts through their resorptive action and through protein synthesis, molecules deposited in the cement line during the reversal phase, and potentially signals from osteocytes within the local bone environment. The review highlights two examples of coupling factors (Cardiotrophin 1 and EphrinB2:EphB4) to illustrate the limited data available, and the need to integrate both the many functions of these factors within the basic multicellular unit (BMU), and the multiple origins of these factors, including other cell types present during the remodelling sequence (such as osteocytes, macrophages, endothelial cells, and T-cells).


Coupling is a fundamental process by which bone resorbing cells (osteoclasts) are followed by bone forming cells (osteoblasts) on the same surface during the process of bone remodelling. This review outlines the history, basic concepts, and mechanisms proposed, and suggests directions for further research into the way this sequence of events in controlled in bone maintenance, development, and healing.

3.
Nature ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020175

ABSTRACT

For healthspan and lifespan, ERK, AMPK and mTORC1 represent critical pathways and inflammation is a centrally important hallmark1-7. Here we examined whether IL-11, a pro-inflammatory cytokine of the IL-6 family, has a negative effect on age-associated disease and lifespan. As mice age, IL-11 is upregulated across cell types and tissues to regulate an ERK-AMPK-mTORC1 axis to modulate cellular, tissue- and organismal-level ageing pathologies. Deletion of Il11 or Il11ra1 protects against metabolic decline, multi-morbidity and frailty in old age. Administration of anti-IL-11 to 75-week-old mice for 25 weeks improves metabolism and muscle function, and reduces ageing biomarkers and frailty across sexes. In lifespan studies, genetic deletion of Il11 extended the lives of mice of both sexes, by 24.9% on average. Treatment with anti-IL-11 from 75 weeks of age until death extends the median lifespan of male mice by 22.5% and of female mice by 25%. Together, these results demonstrate a role for the pro-inflammatory factor IL-11 in mammalian healthspan and lifespan. We suggest that anti-IL-11 therapy, which is currently in early-stage clinical trials for fibrotic lung disease, may provide a translational opportunity to determine the effects of IL-11 inhibition on ageing pathologies in older people.

4.
Elife ; 132024 May 30.
Article in English | MEDLINE | ID: mdl-38813868

ABSTRACT

Germline epigenetic programming, including genomic imprinting, substantially influences offspring development. Polycomb Repressive Complex 2 (PRC2) plays an important role in Histone 3 Lysine 27 trimethylation (H3K27me3)-dependent imprinting, loss of which leads to growth and developmental changes in mouse offspring. In this study, we show that offspring from mouse oocytes lacking the PRC2 protein Embryonic Ectoderm Development (EED) were initially developmentally delayed, characterised by low blastocyst cell counts and substantial growth delay in mid-gestation embryos. This initial developmental delay was resolved as offspring underwent accelerated fetal development and growth in late gestation resulting in offspring that were similar stage and weight to controls at birth. The accelerated development and growth in offspring from Eed-null oocytes was associated with remodelling of the placenta, which involved an increase in fetal and maternal tissue size, conspicuous expansion of the glycogen-enriched cell population, and delayed parturition. Despite placental remodelling and accelerated offspring fetal growth and development, placental efficiency, and fetal blood glucose levels were low, and the fetal blood metabolome was unchanged. Moreover, while expression of the H3K27me3-imprinted gene and amino acid transporter Slc38a4 was increased, fetal blood levels of individual amino acids were similar to controls, indicating that placental amino acid transport was not enhanced. Genome-wide analyses identified extensive transcriptional dysregulation and DNA methylation changes in affected placentas, including a range of imprinted and non-imprinted genes. Together, while deletion of Eed in growing oocytes resulted in fetal growth and developmental delay and placental hyperplasia, our data indicate a remarkable capacity for offspring fetal growth to be normalised despite inefficient placental function and the loss of H3K27me3-dependent genomic imprinting.


Subject(s)
Genomic Imprinting , Animals , Female , Pregnancy , Mice , Polycomb Repressive Complex 2/metabolism , Polycomb Repressive Complex 2/genetics , Fetal Development/genetics , Placenta/metabolism , Oocytes/metabolism , Oocytes/growth & development , Amino Acid Transport System A
5.
J Bone Miner Res ; 39(5): 595-610, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38477809

ABSTRACT

Ablation of Cyp27b1 eliminates calcitriol but does not disturb fetal mineral homeostasis or skeletal development. However, independent of fetal genotypes, maternal loss of Cyp27b1 altered fetal mineral and hormonal levels compared to offspring of WT dams. We hypothesized that these maternal influences would alter postnatal skeletal development. Cyp27b1 null and WT females were mated to bear only Cyp27b1+/- offspring. Forty-eight hours after birth, pups were cross-fostered to dams of the same or opposite genotype that bore them. Maternal and offspring samples were collected on days 21 (weaning) and 42. Offspring measurements included minerals and hormones, BMC by DXA, ash weight and mineral content, gene expression, 3-point bending tests, and microCT. Maternal lactational behavior was evaluated. Milk was analyzed for nutritional content. At day 21, offspring fostered by nulls, independent of birth dam, had ~20% lower weight, BMC, ash weight, and ash calcium than pups fostered by WT dams. Adjustment for body weight accounted for the lower BMC but not the lower ash weight and ash calcium. Hormones and serum/urine minerals did not differ across offspring groups. Offspring fostered by nulls had shorter femurs and lower cortical thickness, mean polar moment of inertia, cortical area, trabecular bone volume, and trabecular number. Dam lactational behaviors and milk nutritional content did not differ between groups. At day 42, body weight, ash weight, lengths, BMC, and tibial bone strength were no longer different between pups fostered by null vs WT dams. In summary, pups fostered by Cyp27b1 nulls, regardless of birth dam, have proportionately smaller skeletons at 21 d, impaired microstructure, but normal mineral homeostasis. The skeletal effects are largely recovered by day 42 (3 wk after weaning). In conclusion, maternal loss of calcitriol impairs early postnatal cortical bone growth and trabecular bone mass, but affected offspring catch up after weaning.


Subject(s)
Bone Development , Calcitriol , Animals , Female , Calcitriol/blood , Calcitriol/metabolism , Bone Development/drug effects , Mice , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/genetics , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/metabolism , Bone Density/drug effects , Lactation , Male , Pregnancy , Mice, Knockout , Body Weight/drug effects , Bone and Bones/drug effects , Bone and Bones/metabolism
6.
Endocr Rev ; 45(4): 493-520, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38315213

ABSTRACT

Preclinical models (typically ovariectomized rats and genetically altered mice) have underpinned much of what we know about skeletal biology. They have been pivotal for developing therapies for osteoporosis and monogenic skeletal conditions, including osteogenesis imperfecta, achondroplasia, hypophosphatasia, and craniodysplasias. Further therapeutic advances, particularly to improve cortical strength, require improved understanding and more rigorous use and reporting. We describe here how trabecular and cortical bone structure develop, are maintained, and degenerate with aging in mice, rats, and humans, and how cortical bone structure is changed in some preclinical models of endocrine conditions (eg, postmenopausal osteoporosis, chronic kidney disease, hyperparathyroidism, diabetes). We provide examples of preclinical models used to identify and test current therapies for osteoporosis, and discuss common concerns raised when comparing rodent preclinical models to the human skeleton. We focus especially on cortical bone, because it differs between small and larger mammals in its organizational structure. We discuss mechanisms common to mouse and human controlling cortical bone strength and structure, including recent examples revealing genetic contributors to cortical porosity and osteocyte network configurations during growth, maturity, and aging. We conclude with guidelines for clear reporting on mouse models with a goal for better consistency in the use and interpretation of these models.


Subject(s)
Cortical Bone , Disease Models, Animal , Animals , Humans , Rats , Mice , Bone Diseases , Rodentia
7.
FEBS J ; 291(8): 1663-1666, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38329021

ABSTRACT

Skull growth involves the expansion of both the flat calvarial bones of the skull and the fibrous marginal zones, termed sutures, between them. This process depends on co-ordinated proliferation of mesenchymal-derived progenitor cells within the sutures, and their differentiation to osteoblasts which produce the bone matrix required to expand the size of the bony plates. Defects lead to premature closure of these sutures, termed craniosynostosis, resulting in heterogeneous head shape differences due to restricted growth of one or more sutures. The impact on the individual depends on how many and which sutures are affected and the severity of the effect. Several genetic loci are responsible, including a wide range of variants in the gene for the interleukin 11 receptor (IL11RA, OMIM#600939). Recent work from Kespohl and colleagues provides new insights into how some of these variants influence IL-11R function; we discuss their influences on IL-11R structure and IL-11 function as a stimulus of osteoblast differentiation.


Subject(s)
Craniosynostoses , Humans , Craniosynostoses/genetics , Skull , Signal Transduction/genetics , Cell Differentiation/genetics , Osteoblasts
8.
JCEM Case Rep ; 2(3): luae021, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38404691

ABSTRACT

A 24-year-old female patient was diagnosed with osteoporosis after presenting with numerous fractures throughout her childhood and adolescence. Risk factors included chronic constipation, severe vitamin D deficiency, and long-term high-dose steroid use for severe eczema. Metabolic bone disorder clinical exome screening (limited panel of metabolic bone disorders and gastrointestinal disorders) was undertaken and revealed a class 4 likely pathogenic variant in the LRP5 gene known to cause osteoporosis. Optimal treatment for patients with this variant is not well defined. A literature review of the condition and potential treatment options is discussed.

9.
Curr Osteoporos Rep ; 22(1): 80-95, 2024 02.
Article in English | MEDLINE | ID: mdl-38198032

ABSTRACT

PURPOSE OF THE REVIEW: The bone and hematopoietic tissues coemerge during development and are functionally intertwined throughout mammalian life. Oncostatin M (OSM) is an inflammatory cytokine of the interleukin-6 family produced by osteoblasts, bone marrow macrophages, and neutrophils. OSM acts via two heterodimeric receptors comprising GP130 with either an OSM receptor (OSMR) or a leukemia inhibitory factor receptor (LIFR). OSMR is expressed on osteoblasts, mesenchymal, and endothelial cells and mice deficient for the Osm or Osmr genes have both bone and blood phenotypes illustrating the importance of OSM and OSMR in regulating these two intertwined tissues. RECENT FINDINGS: OSM regulates bone mass through signaling via OSMR, adaptor protein SHC1, and transducer STAT3 to both stimulate osteoclast formation and promote osteoblast commitment; the effect on bone formation is also supported by action through LIFR. OSM produced by macrophages is an important inducer of neurogenic heterotopic ossifications in peri-articular muscles following spinal cord injury. OSM produced by neutrophils in the bone marrow induces hematopoietic stem and progenitor cell proliferation in an indirect manner via OSMR expressed by bone marrow stromal and endothelial cells that form hematopoietic stem cell niches. OSM acts as a brake to therapeutic hematopoietic stem cell mobilization in response to G-CSF and CXCR4 antagonist plerixafor. Excessive OSM production by macrophages in the bone marrow is a key contributor to poor hematopoietic stem cell mobilization (mobilopathy) in people with diabetes. OSM and OSMR may also play important roles in the progression of several cancers. It is increasingly clear that OSM plays unique roles in regulating the maintenance and regeneration of bone, hematopoietic stem and progenitor cells, inflammation, and skeletal muscles. Dysregulated OSM production can lead to bone pathologies, defective muscle repair and formation of heterotopic ossifications in injured muscles, suboptimal mobilization of hematopoietic stem cells, exacerbated inflammatory responses, and anti-tumoral immunity. Ongoing research will establish whether neutralizing antibodies or cytokine traps may be useful to correct pathologies associated with excessive OSM production.


Subject(s)
Heterocyclic Compounds , Ossification, Heterotopic , Animals , Humans , Mice , Endothelial Cells/metabolism , Hematopoietic Stem Cell Mobilization , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/pathology , Mammals/metabolism , Oncostatin M/genetics , Oncostatin M/metabolism , Oncostatin M/pharmacology
10.
Environ Pollut ; 335: 122270, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37516292

ABSTRACT

Estimation of community-wide consumption of illicit drugs through wastewater analysis is a new concept in Africa although widely applied in developed nations as wastewater-based epidemiology (WBE). It is an important tool that can be used in understanding supply and demand patterns of illicit drug use on a local, national, and international scale. Information on illicit drug use is currently limited in Africa, because of a lack of monitoring structures by governments and financial constraints. This study hopes to bridge that gap by contributing to Africa's baseline information on illicit drug use. This study provides the first application of wastewater analysis to quantitatively evaluate daily illicit drug use in the eThekwini Metropolitan Municipality of KwaZulu-Natal Province of South Africa by quantifying the major urinary excreted metabolites, called drug target residues (DTRs), in raw wastewater from four major wastewater treatment plants (WWTPs) sampled for a week. The results showed that cocaine was the dominant illicit drug consumed in the catchment followed by amphetamine, methamphetamine, 3,4-methylenedioxymethamphetamine and 3,4-methylenedioxyamphetamine, with a per capita use of 360-3000 mg day-1 1000 inh-1, 47-800 mg day-1 1000 inh-1, 19-120 mg day -1 1000 inh-1, not detected (ND) to 4.9 mg day-1 1000 inh-1, and ND to 410 g day-1 1000 inh-1 respectively. The weekly usage patterns between the four WWTPs differed probably due to the lifestyle of the populace serving the different WWTPs. These results provide useful data on illicit drug use in eThekwini that can be utilised by public health agencies to implement suitable response strategies.


Subject(s)
Illicit Drugs , Substance-Related Disorders , Water Pollutants, Chemical , Humans , Wastewater , South Africa , Substance Abuse Detection/methods , Substance-Related Disorders/epidemiology , Amphetamine , Water Pollutants, Chemical/analysis
11.
Environ Pollut ; 333: 122020, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37336345

ABSTRACT

This longitudinal study tests correlations between antimicrobial agents (AA) and corresponding antimicrobial resistance genes (ARGs) generated by a community of >100 k people inhabiting one city (Bath) over a 13 month randomised monitoring programme of community wastewater. Several AAs experienced seasonal fluctuations, such as the macrolides erythromycin and clarithromycin that were found in higher loads in winter, whilst other AA levels, including sulfamethoxazole and sulfapyridine, stayed consistent over the study period. Interestingly, and as opposed to AAs, ARGs prevalence was found to be less variable, which indicates that fluctuations in AA usage might either not directly affect ARG levels or this process spans beyond the 13-month monitoring period. However, it is important to note that weekly positive correlations between individual associated AAs and ARGs were observed where seasonal variability in AA use was reported: ermB and macrolides CLR-clarithromycin and dmCLR-N-desmethyl clarithromycin, aSPY- N-acetyl sulfapyridine and sul1, and OFX-ofloxacin and qnrS. Furthermore, ARG loads normalised to 16S rRNA (gene load per microorganism) were positively correlated to the ARG loads normalised to the human population (gene load per capita), which indicates that the abundance of microorganisms is proportional to the size of human population and that the community size, and not AA levels, is a major driver of ARG levels in wastewater. Comparison of hospital and community wastewater showed higher number of AAs and their metabolites, their frequency of occurrence and concentrations in hospital wastewater. Examples include: LZD-linezolid (used only in severe bacterial infections) and AMX-amoxicillin (widely used, also in community but with very low wastewater stability) that were found only in hospital wastewater. CIP-ciprofloxacin, SMX-sulfamethoxazole, TMP-trimethoprim, MTZ-metronidazole and macrolides were found at much higher concentrations in hospital wastewater while TET-tetracycline and OTC-oxytetracycline, as well as antiretrovirals, had an opposite trend. In contrast, comparable concentrations of resistant genes were observed in both community and hospital wastewater. This supports the hypothesis that AMR levels are more of an endemic nature, developing over time in individual communities. Both hospital and community wastewater had AAs that exceeded PNEC values (e.g. CLR-clarithromycin, CIP-ciprofloxacin). In general, though, hospital effluents had a greater number of quantifiable AAs exceeding PNECs (e.g. SMX-sulfamethoxazole, ERY-erythromycin, TMP-trimethoprim). Hospitals are therefore an important consideration in AMR surveillance as could be high risk areas for AMR.

12.
J Appl Physiol (1985) ; 135(1): 77-87, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37262103

ABSTRACT

Duchenne muscular dystrophy (DMD) is a severe muscle wasting disease caused by mutations or deletions in the dystrophin gene, for which there remains no cure. As DMD patients also develop bone fragility because of muscle weakness and immobilization, better understanding of the pathophysiological mechanisms of dystrophin deficiency will help develop therapies to improve musculoskeletal health. Since alterations in muscle phenotype can influence bone structure, we investigated whether modifying muscle contractile activity through low-frequency stimulation (LFS) could alter bone architecture in mouse models of DMD. We tested the hypothesis that increasing muscle contractile activity could influence bone mass and structure in dystrophin-deficient (mdx) and dystrophin- and utrophin-deficient (dko) dystrophic mice. Tibial bone structure in dko mice was significantly different from that in mdx and wild-type (C57BL/10) control mice. Effects of LFS on bone architecture differed between dystrophic and healthy mice, with LFS thinning cortical bone in both dystrophic models. Bone mass was maintained in LFS-treated healthy mice, with a reduced proportion of high-density bone and concomitant increase in low-density bone. LFS-treated dko mice exhibited a net deficit in cortical thickness and reduced high-density bone but no equivalent increase in low-density bone. These alterations in bone structure and mineral density reduced mechanical strength in mdx and dko mice. The findings reveal that muscle activity can regulate bone mass, structure, mineral accrual, and strength, especially in the context of dystrophin and/or utrophin deficiency. The results provide unique insights into the development of bone fragility in DMD and for devising interventions to improve musculoskeletal health.NEW & NOTEWORTHY Patients with Duchenne muscular dystrophy (DMD) develop bone fragility because of muscle weakness and immobilization. We investigated whether increasing muscle contractile activity through low-frequency stimulation (LFS) could alter bone architecture in dystrophin-deficient (mdx) or dystrophin- and utrophin-deficient (dko) mouse models of DMD. Chronic LFS reduced tibial diaphysis cross sections in mdx and dko mice, without affecting bone shape in healthy mice. LFS affected the distribution of bone mineral density across all phenotypes, with the magnitude of effect being dependent on disease severity.


Subject(s)
Dystrophin , Muscular Dystrophy, Duchenne , Animals , Mice , Mice, Inbred mdx , Utrophin/genetics , Mice, Inbred C57BL , Muscle, Skeletal , Muscle Weakness , Disease Models, Animal
13.
J Hazard Mater ; 454: 131461, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37119569

ABSTRACT

Antimicrobial resistance (AMR) is one of the most significant global health threats. Inappropriate and over-usage of antimicrobial agents (AAs) is a major driver for AMR. Wastewater-based epidemiology (WBE) is a promising tool for monitoring AA usage in communities which is, for the first time, explored in this large scale, longitudinal study. Two contrasting urban catchment areas have been investigated: one city and one small town in the Southwest of the UK over a 13-month period in 2018-2019. Per capita daily intake of 17 AAs and metabolites has been estimated and obtained estimates were triangulated with catchment specific AA prescription data to understand AA usage patterns (both seasons driven prescription and AA prescription compliance). Results have demonstrated positive correlations for all quantifiable parent AAs and metabolites in wastewater, and spatial variability in AA usage was observed even in neighbouring urban areas. WBE and catchment specific prescription data showed similar seasonal trends but with low correlation in intake. The reasons might be variable prescribing patterns, prescription/intake outside the studied catchment, and/or lack of patient compliance. WBE proved useful in differentiating between consumption vs topical usage and/or direct disposal of unused AA. WBE is considered superior to prescription data as it provides information on AAs prescribed outside of the monitoring catchment, e.g. HIV antivirals and TB drugs. However, data triangulation, of both prescription data and wastewater data, provides the most comprehensive approach to understanding AA usage in communities.


Subject(s)
Anti-Infective Agents , Communicable Diseases , Humans , Wastewater , Wastewater-Based Epidemiological Monitoring , Cities , Longitudinal Studies
14.
J Hazard Mater ; 450: 130989, 2023 05 15.
Article in English | MEDLINE | ID: mdl-36848844

ABSTRACT

This manuscript showcases results from a large scale and comprehensive wastewater-based epidemiology (WBE) study focussed on multi-biomarker suite analysis of both chemical and biological determinants in 10 cities and towns across England equating to a population of ∼7 million people. Multi-biomarker suite analysis, describing city metabolism, can provide a holistic understanding to encompass all of human, and human-derived, activities of a city in a single model: from lifestyle choices (e.g. caffeine intake, nicotine) through to health status (e.g. prevalence of pathogenic organisms, usage of pharmaceuticals as proxy for non-communicable disease, NCD, conditions or infectious disease status), and exposure to harmful chemicals due to environmental and industrial sources (e.g. pesticide intake via contaminated food and industrial exposure). Population normalised daily loads (PNDLs) of many chemical markers were found, to a large extent, driven by the size of population contributing to wastewater (especially NCDs). However, there are several exceptions providing insights into chemical intake that can inform either disease status in various communities or unintentional exposure to hazardous chemicals: e.g. very high PNDLs of ibuprofen in Hull resulting from its direct disposal (confirmed by ibuprofen/2-hydroxyibuprofen ratios) and bisphenol A (BPA) in Hull, Lancaster and Portsmouth likely related to industrial discharge. An importance for tracking endogenous health markers such as 4-hydroxy-2-nonenal-mercapturic acid (HNE-MA, an oxidative stress marker) as a generic marker of health status in communities was observed due to increased levels of HNE-MA seen at Barnoldswick wastewater treatment plant that coincided with higher-than-average paracetamol usage and SARS-CoV-2 prevalence in this community. PNDLs of virus markers were found to be highly variable. Being very prevalent in communities nationwide during sampling, SARS-CoV-2 presence in wastewater was to a large extent community driven. The same applies to the fecal marker virus, crAssphage, which is very prevalent in urban communities. In contrast, norovirus and enterovirus showed much higher variability in prevalence across all sites investigated, with clear cases of localized outbreaks in some cities while maintaining low prevalence in other locations. In conclusion, this study clearly demonstrates the potential for WBE to provide an integrated assessment of community health which can help target and validate policy interventions aimed at improving public health and wellbeing.


Subject(s)
COVID-19 , Wastewater , Humans , Wastewater-Based Epidemiological Monitoring , SARS-CoV-2 , Public Health , Ibuprofen , Biomarkers , COVID-19 Testing
15.
J Bone Miner Res ; 38(1): 5-13, 2023 01.
Article in English | MEDLINE | ID: mdl-36301601

ABSTRACT

Despite knowledge that sexually dimorphic mechanisms regulate bone homeostasis, sex often remains unreported and unconsidered in preclinical experimental design. Failure to report sex could lead to inappropriate generalizations of research findings and less effective translation into clinical practice. Preclinical sex bias (preferential selection of one sex) is present across other fields, including neuroscience and immunology, but remains uninvestigated in skeletal research. For context, we first summarized key literature describing sexually dimorphic bone phenotypes in mice. We then investigated sex reporting practices in skeletal research, specifically how customary it is for murine sex to be included in journal article titles or abstracts and then determined whether any bias in sex reporting exists. Because sex hormones are important regulators of bone health (gonadectomy procedures, ie, ovariectomy [OVX] and orchidectomy [ORX], are common yet typically not reported with sex), we incorporated reporting of OVX and ORX terms, representing female and male mice, respectively, into our investigations around sex bias. Between 1999 and 2020, inclusion of sex in titles or abstracts was low in murine skeletal studies (2.6%-4.06%). Reporting of OVX and ORX terms was low (1.44%-2.64%) and reporting of OVX and ORX with sex uncommon (0.4%-0.3%). When studies were combined to include both sexes and OVX (representing female) and ORX terms (representing male), a bias toward reporting of female mice was evident. However, when the terms OVX and ORX were removed, a bias toward the use of male mice was identified. Thus, studies focusing on sex hormones are biased toward female reporting with all other studies biased in reporting of male mice. We now call upon journal editors to introduce consistent guidance for transparent and accessible reporting of murine sex in skeletal research to better monitor preclinical sex bias, to diversify development of treatments for bone health, and to enable global skeletal health equity. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Bone and Bones , Gonadal Steroid Hormones , Humans , Mice , Male , Female , Animals , Ovariectomy , Bone Density
16.
Sci Total Environ ; 859(Pt 1): 160034, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36356746

ABSTRACT

Chemical pollution (including chemicals of emerging concern - CECs) continues to gain increasing attention as a global threat to human health and the environment, with numerous reports on the adverse and sometimes devastating effects upon ecosystems the presence of these chemicals can have. Whilst many studies have investigated presence of CECs in aquatic environments, these studies have been often focused on higher income countries, leaving significant knowledge gaps for many low-middle income countries. This study proposes a new integrated powerless, in-situ multi-mode extraction (iMME) sampler for the analysis of chemicals (105 CECs) and biological (5 genes) markers in water in contrasting settings: an urbanized Avon River in the UK and remote Olifants River in Kruger National Park in South Africa. The overarching goal was to develop a sampling device that maintains integrity of a diverse range of analytes via analyte immobilization using polymeric and glass fibre materials, without access to power supply or cold chain (continuous chilled storage) for sample transportation. Chemical analysis was achieved using ultra-performance liquid chromatography coupled with tandem mass spectrometry. Several mobile CECs showed low stability in river water, at room temperature and typical 24 h sampling/transport time. It is therefore recommended that, in the absence of cooling, environmental water samples are spiked with internal standards on site, immediately after collection and analyte immobilization option is considered, in order to allow fully quantitative analysis. iMME has proven effective in immobilization, concentration and increased stability of CECs at room temperature (and at least 7 days storage) allowing for sample collection at remote locations. The results from the River Avon and Olifants River sampling indicate that the pristine environment of Olifants catchment is largely unaffected by CECs common in the urbanized River Avon in the UK with a few exceptions: lifestyle chemicals (e.g., caffeine, nicotine and their metabolites), paracetamol and UV filters due to tourism and carbamazepine due to its persistent nature. iMME equipped with an additional gene extraction capability provides an exciting new opportunity of comprehensive biochemical profiling of aqueous samples with one powerless in-situ device. Further work is required to provide full integration of the device and comprehensive assessment of performance in both chemical and biological targets.


Subject(s)
Environmental Monitoring , Water Pollutants, Chemical , Humans , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Water/analysis , Ecosystem , Gas Chromatography-Mass Spectrometry
17.
Water Res ; 229: 119391, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36462253

ABSTRACT

This paper explores Wastewater-Based Epidemiology (WBE) as a tool enabling understanding of city's pain treatment in an intercity longitudinal study. An intensive 13-month monitoring programme was undertaken in two adjacent urban areas in South-West England: a small commuter town Keynsham and the city of Bath (>180 samples collected). The study has shown a great potential of using triangulated WBE and National health Service (NHS) prescription data in understanding pain treatment in two contrasting communities with strong apparent seasonal patterns of short pain medications vs chronic pain treatment as well as the type of treatment used (e.g. oral vs topical). Community-wide usage of Non-Steroidal Anti-inflammatory Drugs (NSAIDs) and paracetamol in the intercity study is population size and season driven with the highest usage recorded in winter months. This contrasts with other pain pharmaceuticals, especially those used for chronic pain, where no/limited seasonal usage was recorded. Unmetabolized NSAIDs are, to a large extent, directly disposed of into the sewerage system bypassing metabolism due to their topical application. This is particularly apparent in winter months with naproxen showing the highest seasonal variability. Pharma/met (ratio of pharmaceutical and its metabolite concentration) analysis allows for tracking topical (non-metabolic) application/down-the-drain disposal of pharmaceuticals with frequent instances of direct disposal of NSAIDs into the sewerage system observed. Normalisation of pharma markers to population size shows comparable estimates of pharma usage in the two cities confirming population as the main driver of pharma loads in wastewater. Variable application patterns of pain pharmaceuticals make back-calculation of intake more convoluted. Intake calculated using percentage excretion of parent NSAIDs will likely lead to overestimation, as it is assumed that NSAIDs are subject to extensive metabolism (this is not the case for topical applications). Intake calculated using percentage excretion of metabolites (or parent compound) as consumption markers leads to underestimation of NSAIDs usage due to contributions from topical application not being accounted for. Prescription data indicates cumulative internal and topical usage, but the data ignores large proportion of over-the-counter usage. Therefore, we have proposed a combined approach allowing for estimation of total usage including, and differentiating between, topical application and oral administration.


Subject(s)
Chronic Pain , Wastewater-Based Epidemiological Monitoring , Humans , Longitudinal Studies , Cities , State Medicine , Pharmaceutical Preparations/analysis , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
19.
Clin Epigenetics ; 14(1): 183, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36544159

ABSTRACT

BACKGROUND: Non-genetic disease inheritance and offspring phenotype are substantially influenced by germline epigenetic programming, including genomic imprinting. Loss of Polycomb Repressive Complex 2 (PRC2) function in oocytes causes non-genetically inherited effects on offspring, including embryonic growth restriction followed by post-natal offspring overgrowth. While PRC2-dependent non-canonical imprinting is likely to contribute, less is known about germline epigenetic programming of non-imprinted genes during oocyte growth. In addition, de novo germline mutations in genes encoding PRC2 lead to overgrowth syndromes in human patients, but the extent to which PRC2 activity is conserved in human oocytes is poorly understood. RESULTS: In this study, we identify a discrete period of early oocyte growth during which PRC2 is expressed in mouse growing oocytes. Deletion of Eed during this window led to the de-repression of 343 genes. A high proportion of these were developmental regulators, and the vast majority were not imprinted genes. Many of the de-repressed genes were also marked by the PRC2-dependent epigenetic modification histone 3 lysine 27 trimethylation (H3K27me3) in primary-secondary mouse oocytes, at a time concurrent with PRC2 expression. In addition, we found H3K27me3 was also enriched on many of these genes by the germinal vesicle (GV) stage in human oocytes, strongly indicating that this PRC2 function is conserved in the human germline. However, while the 343 genes were de-repressed in mouse oocytes lacking EED, they were not de-repressed in pre-implantation embryos and lost H3K27me3 during pre-implantation development. This implies that H3K27me3 is a transient feature that represses a wide range of genes in oocytes. CONCLUSIONS: Together, these data indicate that EED has spatially and temporally distinct functions in the female germline to repress a wide range of developmentally important genes and that this activity is conserved in the mouse and human germlines.


Subject(s)
DNA Methylation , Histones , Oocytes , Polycomb Repressive Complex 2 , Animals , Mice , Genes, Developmental , Histones/metabolism , Oocytes/growth & development , Oocytes/metabolism , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...