Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 935: 173252, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38768720

ABSTRACT

In this study, we investigated the effects of soil organic carbon (SOC) distribution and water uptake by plant roots on PFAS movement in the vadose zone with a deep groundwater table under temperate, humid climate conditions. Two series of numerical simulations were performed with the HYDRUS computer code, representing the leaching of historical PFOS contamination and the infiltration of water contaminated with PFOA, respectively. We considered soil profiles with three distributions of SOC (no SOC, realistic SOC distribution decreasing with depth, and uniform SOC equal to the content measured in topsoil), three root distributions (bare soil, grassland, and forest), and three soil textures (sand, sandy loam, and loam). The SOC distribution had a profound impact on the velocity of PFOS movement. The apparent retardation factor for realistic SOC distribution was twice as large as for the scenario with no SOC and more than three times smaller than for the scenario with uniformly high SOC content. We also showed that the root distribution in soil profoundly impacts the simulations of PFAS migration through soil. Including the root zone significantly slows down the movement of PFAS, primarily due to increased evapotranspiration and reduced downward water flux. Another effect of water uptake by plant roots is an increase of PFAS concentrations in soil water (evapo-concentration). The evapo-concentration and the slowdown of PFAS movement due to root water uptake are more significant in fine-textured soils than in sand.

2.
Sci Total Environ ; 877: 162904, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36933729

ABSTRACT

We investigated the influence of climate change in the period 1951-2020 on shallow aquifers in the Brda and Wda outwash plains (Pomeranian Region, Northern Poland). There was a significant temperature rise (0.3 °C/10 years), which accelerated after 1980 (0.66 °C/10 years). Precipitation became increasingly irregular - extremely rainy years occurred right after or before extremely dry years, and intensive rainfall events became more frequent after 2000. The groundwater level decreased over the last 20 years, even though the average annual precipitation was higher than in the previous 50 years. We carried out numerical simulations of water flow in representative soil profiles for the years 1970-2020 using the HYDRUS-1D model, developed and calibrated during our earlier work at an experimental site in the Brda outwash plain (Gumula-Kawecka et al., 2022). We used a relationship between the water head and flux at the bottom of the soil profiles (the third-type boundary condition) to reproduce groundwater table fluctuations caused by recharge variability in time. The calculated daily recharge showed a decreasing linear trend for the last 20 years (0.05-0.06 mm d-1/10 years), and dropping trends in water table level and soil water content in the entire profile of vadose zone. Field tracer experiments were performed to estimate impact of extremely rain events on water flux in vadose zone. The results suggest that tracer travel times are strongly determined by water content in the unsaturated zone which is determined by precipitation amount in span of weeks, rather than extremely high precipitation events.

3.
J Environ Manage ; 334: 117463, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36801802

ABSTRACT

As a critical element in preserving the health of urban populations, water distribution systems (WDSs) must be ready to implement emergency plans when catastrophic events such as contamination events occur. A risk-based simulation-optimization framework (EPANET-NSGA-III) combined with a decision support model (GMCR) is proposed in this study to determine optimal locations for contaminant flushing hydrants under an array of potentially hazardous scenarios. Risk-based analysis using Conditional Value-at-Risk (CVaR)-based objectives can address uncertainties regarding the mode of WDS contamination, thereby providing a robust plan to minimize the associated risks at a 95% confidence level. Conflict modeling by GMCR achieved an optimal compromise solution within the Pareto front by identifying a final stable consensus among the decision-makers involved. A novel hybrid contamination event grouping-parallel water quality simulation technique was incorporated into the integrated model to reduce model runtime, the main deterrent in optimization-based methods. The nearly 80% reduction in model runtime made the proposed model a viable solution for online simulation-optimization problems. The framework's capacity to address real-world problems was evaluated for the WDS operating in Lamerd, a city in Fars Province, Iran. Results showed that the proposed framework was capable of highlighting a single flushing strategy, which not only optimally reduced risks associated with contamination events, but provided acceptable coverage against such threats, flushing 35-61.3% of input contamination mass on average, and reducing average time-to-return to normal conditions by 14.4-60.2%, while employing less than half of the initial potential hydrants.


Subject(s)
Computer Simulation , Water Pollution , Water Supply , Cities , Water Pollution/prevention & control , Water Quality , Iran , Water Supply/methods
4.
J Hazard Mater ; 407: 124874, 2021 04 05.
Article in English | MEDLINE | ID: mdl-33373966

ABSTRACT

The concentration of nonionic surfactants like Triton X-100 (TX100) can influence the transport and fate of emerging contaminants (e.g., carbon nanotubes) in porous media, but limited research has previously addressed this issue. This study investigates the co-transport of functionalized multi-walled carbon nanotubes (MWCNTs) and various concentrations of TX100 in saturated quartz sand (QS). Batch experiments and molecular dynamics simulations were conducted to investigate the interactions between TX100 and MWCNTs. Results indicated that the concentration ratio of MWCNTs and TX100 strongly influences the dispersion of MWCNTs and interaction forces between MWCNTs and QS during the transport. Breakthrough curves of MWCNTs and TX100 and retention profiles of MWCNTs were determined and simulated in column studies. MWCNTs strongly enhanced the retention of TX100 in QS due to the high affinity of TX100 for MWCNTs. Conversely, the concentration of TX100 had a non-monotonic impact on MWCNT retention. The maximum transport of MWCNTs in the QS occurred at an input concentration of TX100 that was lower than the critical micelle concentration. This suggests that the relative importance of factors influencing MWCNTs changed with TX100 sorption. Results from interaction energy calculations and modeling of competitive blocking indicate that the predictive ability of interaction energy calculations and colloid filtration theory may be lost because TX100 mainly altered intermolecular forces between the MWCNT and porous media. This study provides new insights into the co-transport of surfactants and MWCNTs in porous media, which can be useful for environmental applications and risk management.

5.
Environ Pollut ; 255(Pt 1): 113124, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31622956

ABSTRACT

The transport and retention behavior of polymer- (PVP-AgNP) and surfactant-stabilized (AgPURE) silver nanoparticles in carbonate-dominated saturated and unconsolidated porous media was studied at the laboratory scale. Initial column experiments were conducted to investigate the influence of chemical heterogeneity (CH) and nano-scale surface roughness (NR) arising from mixtures of clean, positively charged calcium carbonate sand (CCS), and negatively charged quartz sands. Additional column experiments were performed to elucidate the impact of CH and NR arising from the presence and absence of soil organic matter (SOM) on a natural carbonate-dominated aquifer material. The role of the nanoparticle capping agent was examined under all conditions tested in the column experiments. Nanoparticle transport was well described using a numerical model that facilitated blocking on one or two retention sites. Results demonstrate that an increase in CCS content in the artificially mixed porous medium leads to delayed breakthrough of the AgNPs, although AgPURE was much less affected by the CCS content than PVP-AgNPs. Interestingly, only a small portion of the solid surface area contributed to AgNP retention, even on positively charged CCS, due to the presence of NR which weakened the adhesive interaction. The presence of SOM enhanced the retention of AgPURE on the natural carbonate-dominated aquifer material, which can be a result of hydrophobic or hydrophilic interactions or due to cation bridging. Surprisingly, SOM had no significant impact on PVP-AgNP retention, which suggests that a reduction in electrostatic repulsion due to the presence of SOM outweighs the relative importance of other binding mechanisms. Our findings are important for future studies related to AgNP transport in shallow unconsolidated calcareous and siliceous sands.


Subject(s)
Calcium Carbonate/analysis , Metal Nanoparticles/analysis , Organic Chemicals/chemistry , Silver/analysis , Soil/chemistry , Groundwater/chemistry , Hydrophobic and Hydrophilic Interactions , Polymers/chemistry , Porosity , Quartz/chemistry , Soil/classification , Surface-Active Agents
6.
Environ Pollut ; 247: 907-916, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30823345

ABSTRACT

Multi-walled carbon nanotubes (MWCNTs) are increasing used in commercial applications and may be released into the environment with anionic surfactants, such as sodium dodecylbenzenesulfonate (SDBS), in sewer discharge. Little research has examined the transport, retention, and remobilization of MWCNTs in the presence or absence of SDBS in porous media with controlled chemical heterogeneity, and batch and column scale studies were therefore undertaken to address this gap in knowledge. The adsorption isotherms of SDBS on quartz sand (QS), goethite coated quartz sand (GQS), and MWCNTs were determined. Adsorption of SDBS (MWCNTs ¼â€¯GQS > QS) decreased zeta potentials for these materials, and produced a charge reversal for goethite. Transport of MWCNTs (5 mg L-1) dramatically decreased with an increase in the fraction of GQS from 0 to 0.1 in the absence of SDBS. Conversely, co-injection of SDBS (10 and 50 mg L-1) and MWCNTs radically increased the transport of MWCNTs when the GQS fraction was 0, 0.1, and 0.3, especially at a higher SDBS concentration, and altered the shape of retention profile. Mathematical modeling revealed that competitive blocking was not the dominant mechanism for the SDBS enhancement of MWCNT transport. Rather, SDBS sorption increased MWCNT transport by increasing electrostatic and/or steric interactions, or creating reversible interactions on rough surfaces. Sequential injection of pulses of MWCNTs and SDBS in sand (0.1 GQS fraction) indicated that SDBS could mobilize some of retained MWCNTs from the top to deeper sand layers, but only a small amount of released MWCNTs were recovered in the effluent. SDBS therefore had a much smaller influence on MWCNT transport in sequential injection than in co-injection, presumably because of a greater energy barrier to MWCNT release than retention. This research sheds novel insight on the roles of competitive blocking, chemical heterogeneity and nanoscale roughness, and injection sequence on MWCNT retention and release.


Subject(s)
Benzenesulfonates/chemistry , Environmental Pollutants/chemistry , Nanotubes, Carbon/chemistry , Surface-Active Agents/chemistry , Adsorption , Porosity , Quartz/chemistry
7.
Environ Pollut ; 236: 195-207, 2018 May.
Article in English | MEDLINE | ID: mdl-29414340

ABSTRACT

Packed column experiments were conducted to investigate the transport and blocking behavior of surfactant- and polymer-stabilized engineered silver nanoparticles (Ag-ENPs) in saturated natural aquifer media with varying content of material < 0.063 mm in diameter (silt and clay fraction), background solution chemistry, and flow velocity. Breakthrough curves for Ag-ENPs exhibited blocking behavior that frequently produced a delay in arrival time in comparison to a conservative tracer that was dependent on the physicochemical conditions, and then a rapid increase in the effluent concentration of Ag-ENPs. This breakthrough behavior was accurately described using one or two irreversible retention sites that accounted for Langmuirian blocking on one site. Simulated values for the total retention rate coefficient and the maximum solid phase concentration of Ag-ENPs increased with increasing solution ionic strength, cation valence, clay and silt content, decreasing flow velocity, and for polymer-instead of surfactant-stabilized Ag-ENPs. Increased Ag-ENP retention with ionic strength occurred because of compression of the double layer and lower magnitudes in the zeta potential, whereas lower velocities increased the residence time and decreased the hydrodynamics forces. Enhanced Ag-ENP interactions with cation valence and clay were attributed to the creation of cation bridging in the presence of Ca2+. The delay in breakthrough was always more pronounced for polymer-than surfactant-stabilized Ag-ENPs, because of differences in the properties of the stabilizing agents and the magnitude of their zeta-potential was lower. Our results clearly indicate that the long-term transport behavior of Ag-ENPs in natural, silicate dominated aquifer material will be strongly dependent on blocking behavior that changes with the physicochemical conditions and enhanced Ag-ENP transport may occur when retention sites are filled.


Subject(s)
Groundwater/chemistry , Metal Nanoparticles/analysis , Polymers/chemistry , Silicates/chemistry , Silver/analysis , Surface-Active Agents/chemistry , Aluminum Silicates/chemistry , Clay , Metal Nanoparticles/chemistry , Models, Theoretical , Osmolar Concentration , Silver/chemistry
8.
Water Res ; 109: 358-366, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-27931008

ABSTRACT

Saturated soil column experiments were conducted to investigate the transport, retention, and release behavior of a low concentration (1 mg L-1) of functionalized 14C-labeled multi-walled carbon nanotubes (MWCNTs) in a natural soil under various solution chemistries. Breakthrough curves (BTCs) for MWCNTS exhibited greater amounts of retardation and retention with increasing solution ionic strength (IS) or in the presence of Ca2+ in comparison to K+, and retention profiles (RPs) for MWCNTs were hyper-exponential in shape. These BTCs and RPs were well described using the advection-dispersion equation with a term for time- and depth-dependent retention. Fitted values of the retention rate coefficient and the maximum retained concentration of MWCNTs were higher with increasing IS and in the presence of Ca2+ in comparison to K+. Significant amounts of MWCNT and soil colloid release was observed with a reduction of IS due to expansion of the electrical double layer, especially following cation exchange (when K+ displaced Ca2+) that reduced the zeta potential of MWCNTs and the soil. Analysis of MWCNT concentrations in different soil size fractions revealed that >23.6% of the retained MWCNT mass was associated with water-dispersible colloids (WDCs), even though this fraction was only a minor portion of the total soil mass (2.38%). More MWCNTs were retained on the WDC fraction in the presence of Ca2+ than K+. These findings indicated that some of the released MWCNTs by IS reduction and cation exchange were associated with the released clay fraction, and suggests the potential for facilitated transport of MWCNT by WDCs.


Subject(s)
Nanotubes, Carbon , Soil , Cations , Colloids , Models, Chemical
9.
Environ Pollut ; 221: 470-479, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28012669

ABSTRACT

Batch and saturated soil column experiments were conducted to investigate sorption and mobility of two 14C-labeled contaminants, the hydrophobic chlordecone (CLD) and the sulfadiazine (SDZ), in the absence or presence of functionalized multi-walled carbon nanotubes (MWCNTs). The transport behaviors of CLD, SDZ, and MWCNTs were studied at environmentally relevant concentrations (0.1-10 mg L-1) and they were applied in the column studies at different times. The breakthrough curves and retention profiles were simulated using a numerical model that accounted for the advective-dispersive transport of all compounds, attachment/detachment of MWCNTs, equilibrium and kinetic sorption of contaminants, and co-transport of contaminants with MWCNTs. The experimental results indicated that the presence of mobile MWCNTs facilitated remobilization of previously deposited CLD and its co-transport into deeper soil layers, while retained MWCNTs enhanced SDZ deposition in the topsoil layers due to the increased adsorption capacity of the soil. The modeling results then demonstrated that the mobility of engineered nanoparticles (ENPs) in the environment and the high affinity and entrapment of contaminants to ENPs were the main reasons for ENP-facilitated contaminant transport. On the other hand, immobile MWCNTs had a less significant impact on the contaminant transport, even though they were still able to enhance the adsorption capacity of the soil.


Subject(s)
Chlordecone/analysis , Models, Chemical , Nanotubes, Carbon/chemistry , Soil Pollutants/analysis , Sulfadiazine/analysis , Adsorption , Soil/chemistry , Soil Pollutants/chemistry , Sulfadiazine/chemistry , Symporters
10.
Environ Sci Technol ; 50(23): 12713-12721, 2016 12 06.
Article in English | MEDLINE | ID: mdl-27788326

ABSTRACT

Transport and retention behavior of multi-walled carbon nanotubes (MWCNTs) was studied in mixtures of negatively charged quartz sand (QS) and positively charged goethite-coated sand (GQS) to assess the role of chemical heterogeneity. The linear equilibrium sorption model provided a good description of batch results, and the distribution coefficients (KD) drastically increased with the GQS fraction that was electrostatically favorable for retention. Similarly, retention of MWCNTs increased with the GQS fraction in packed column experiments. However, calculated values of KD on GQS were around 2 orders of magnitude smaller in batch than packed column experiments due to differences in lever arms associated with hydrodynamic and adhesive torques at microscopic roughness locations. Furthermore, the fraction of the sand surface area that was favorable for retention (Sf) was much smaller than the GQS fraction because nanoscale roughness produced shallow interactions that were susceptible to removal. These observations indicate that only a minor fraction of the GQS was favorable for MWCNT retention. These same observations held for several different sand sizes. Column breakthrough curves were always well described using an advective-dispersive transport model that included retention and blocking. However, depth-dependent retention also needed to be included to accurately describe the retention profile when the GQS fraction was small. Results from this research indicate that roughness primarily controlled the retention of MWCNTs, although goethite surfaces played an important secondary role.


Subject(s)
Nanotubes, Carbon/ultrastructure , Quartz , Porosity , Silicon Dioxide
11.
J Contam Hydrol ; 177-178: 30-42, 2015.
Article in English | MEDLINE | ID: mdl-25835544

ABSTRACT

Based on small-scale laboratory and field-scale lysimeter experiments, the sorption and biodegradation of sulfonamide sulfadiazine (SDZ) were investigated in unsaturated sandy and silty-clay soils. Sorption and biodegradation were low in the laboratory, while the highest leaching rates were observed when SDZ was mixed with manure. The leaching rate decreased when SDZ was mixed with pure water, and was smallest with the highest SDZ concentrations. In the laboratory, three transformation products (TPs) developed after an initial lag phase. However, the amount of TPs was different for different mixing-scenarios. The TP 2-aminopyrimidine was not observed in the laboratory, but was the most prevalent TP at the field scale. Sorption was within the same range at the laboratory and field scales. However, distinctive differences occurred with respect to biodegradation, which was higher in the field lysimeters than at the laboratory scale. While the silty-clay soil favored sorption of SDZ, the sandy, and thus highly permeable, soil was characterized by short half-lives and thus a quick biodegradation of SDZ. For 2-aminopyrimidine, half-lives of only a few days were observed. Increased field-scale biodegradation in the sandy soil resulted from a higher water and air permeability that enhanced oxygen transport and limited oxygen depletion. Furthermore, low pH was more important than the organic matter and clay content for increasing the biodegradation of SDZ. A numerical analysis of breakthrough curves of bromide, SDZ, and its TPs showed that preferential flow pathways strongly affected the solute transport within shallow parts of the soil profile at the field scale. However, this effect was reduced in deeper parts of the soil profile. Due to high field-scale biodegradation in several layers of both soils, neither SDZ nor 2-aminopyrimidine was detected in the discharge of the lysimeter at a depth of 1m. Synthetic 50 year long simulations, which considered the application of manure with SDZ for general agricultural practices in Germany and humid climate conditions, showed that the concentration of SDZ decreased below 0.1 µg/L in both soils below the depth of 50 cm.


Subject(s)
Soil Pollutants/analysis , Sulfadiazine/analysis , Aluminum Silicates , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Biodegradation, Environmental , Clay , Germany , Half-Life , Manure/analysis , Models, Theoretical , Pyrimidines/analysis , Soil/chemistry , Soil Pollutants/chemistry , Soil Pollutants/metabolism , Sulfadiazine/chemistry , Water/analysis
12.
J Hazard Mater ; 243: 223-31, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23141380

ABSTRACT

Organic amendments often represent a source of trace metals (TMs) in soils, which may partly leach into the groundwater. The objectives of this study were (1) to validate Hydrus-2D for modeling the transport of Zn and Cu in an Alfisol amended with pig slurry (PS) by comparing numerical simulations and experimental field data, and (2) to model the next 50 years of TM movements under scenarios of suspended or continued PS amendments. First, between 2000 and 2008, we collected detailed Zn and Cu data from a soil profile in Santa Maria, Brazil. Two hypotheses about Zn and Cu reactivity with the solid phase were tested, considering physical, hydraulic, and chemical characteristics of six soil layers. Using a two-site sorption model with a sorption kinetic rate adjusted based on laboratory EDTA extractions, Hydrus simulations of the vertical TM transport were found to satisfactorily describe the soil Zn and Cu concentration profiles. Second, the long-term fate of Zn and Cu in the soil was assessed using the validated parameterized model. Numerical simulations showed that Zn and Cu did not present risks for groundwater pollution. However, future Cu accumulation in the surface soil layer would exceed the Brazilian threshold for agricultural soils.


Subject(s)
Copper/chemistry , Sewage , Soil Pollutants/chemistry , Zinc/chemistry , Agriculture , Animals , Brazil , Chelating Agents/chemistry , Edetic Acid/chemistry , Hydrogen-Ion Concentration , Industrial Waste , Models, Theoretical , Reproducibility of Results , Swine , Thermodynamics
13.
Environ Pollut ; 157(2): 463-73, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18952328

ABSTRACT

Biopurification systems treating pesticide contaminated water are very efficient, however they operate as a black box. Processes inside the system are not yet characterized. To optimize the performance, knowledge of degradation and retention processes needs to be generated. Therefore, displacement experiments were carried out for four pesticides (isoproturon, bentazone, metalaxyl, linuron) in columns containing different organic mixtures. Bromide, isoproturon and bentazone breakthrough curves (BTCs) were well described using the convection-dispersion equation (CDE) and a first-order degradation kinetic approach. Metalaxyl and linuron BTCs were well described using the CDE model expanded with Monod-type kinetics. Freundlich sorption, first-order degradation and Monod kinetics coefficients were fitted to the BTCs. Fitted values of the distribution coefficient K(f,column) were much lower than those determined from batch experiments. Based on mobility, pesticides were ranked as: bentazone>metalaxyl-isoproturon>linuron. Based on degradability, pesticides were ranked as: linuron>metalaxyl-isoproturon>bentazone.


Subject(s)
Pesticides/pharmacokinetics , Water Pollutants, Chemical/pharmacokinetics , Water Purification/methods , Adsorption , Alanine/analogs & derivatives , Alanine/pharmacokinetics , Benzothiadiazines/pharmacokinetics , Biotransformation , Chemistry, Physical , Complex Mixtures/chemistry , Linuron/pharmacokinetics , Models, Chemical , Phenylurea Compounds/pharmacokinetics
14.
J Contam Hydrol ; 104(1-4): 36-60, 2009 Feb 16.
Article in English | MEDLINE | ID: mdl-19012993

ABSTRACT

The past decade has seen considerable progress in the development of models simulating pesticide transport in structured soils subject to preferential flow (PF). Most PF pesticide transport models are based on the two-region concept and usually assume one (vertical) dimensional flow and transport. Stochastic parameter sets are sometimes used to account for the effects of spatial variability at the field scale. In the past decade, PF pesticide models were also coupled with Geographical Information Systems (GIS) and groundwater flow models for application at the catchment and larger regional scales. A review of PF pesticide model applications reveals that the principal difficulty of their application is still the appropriate parameterization of PF and pesticide processes. Experimental solution strategies involve improving measurement techniques and experimental designs. Model strategies aim at enhancing process descriptions, studying parameter sensitivity, uncertainty, inverse parameter identification, model calibration, and effects of spatial variability, as well as generating model emulators and databases. Model comparison studies demonstrated that, after calibration, PF pesticide models clearly outperform chromatographic models for structured soils. Considering nonlinear and kinetic sorption reactions further enhanced the pesticide transport description. However, inverse techniques combined with typically available experimental data are often limited in their ability to simultaneously identify parameters for describing PF, sorption, degradation and other processes. On the other hand, the predictive capacity of uncalibrated PF pesticide models currently allows at best an approximate (order-of-magnitude) estimation of concentrations. Moreover, models should target the entire soil-plant-atmosphere system, including often neglected above-ground processes such as pesticide volatilization, interception, sorption to plant residues, root uptake, and losses by runoff. The conclusions compile progress, problems, and future research choices for modelling pesticide displacement in structured soils.


Subject(s)
Models, Theoretical , Motion , Pesticides/analysis , Pesticides/chemistry , Soil/analysis , Computer Simulation , Water Movements
15.
J Contam Hydrol ; 104(1-4): 4-35, 2009 Feb 16.
Article in English | MEDLINE | ID: mdl-19012994

ABSTRACT

Although it has many positive effects, soil structure may adversely affect the filtering function of the vadose zone that protects natural water resources from various sources of pollution. Physically based models have been developed to analyze the impacts of preferential water flow (PF) and physical non-equilibrium (PNE) solute transport on soil and water resources. This review compiles results published over the past decade on the application of such models for simulating PF and PNE non-reactive tracer transport for scales ranging from the soil column to the catchment area. Recent progress has been made in characterizing the hydraulically relevant soil structures, dynamic flow conditions, inverse parameter and uncertainty estimations, independent model parameterizations, stochastic descriptions of soil heterogeneity, and 2D or 3D extensions of PNE models. Two-region models are most widely used across all scales; as a stand-alone approach to be used up to the field scale, or as a component of distributed, larger scale models. Studies at all scales suggest that inverse identification of parameters related to PF is generally not possible based on a hydrograph alone. Information on flux-averaged and spatially distributed local resident concentrations is jointly required for quantifying PNE transport. At the column and soil profile scale, model predictions of PF are becoming increasingly realistic through the implementation of the 3D soil structure as derived from hydrogeophysical and tracer techniques. At the field scale, integrating effects of the soil structure and its spatial variability has been attempted by combining 1D PNE approaches with stochastic parameter sampling. At the catchment area scale, the scarcity of data makes validation of PF related model components a task yet to be accomplished. The quest for easily measurable proxy variables, as 'the missing link' between soil structure and model parameters, continues in order to improve the practical predictive capability of PF-PNE models. A follow-up paper complementing this manuscript reviews model applications involving non-equilibrium transport of pesticides, as representatives of reactive solutes.


Subject(s)
Models, Theoretical , Soil , Water Movements , Computer Simulation , Solutions/analysis , Solutions/chemistry
16.
J Contam Hydrol ; 104(1-4): 107-25, 2009 Feb 16.
Article in English | MEDLINE | ID: mdl-19062128

ABSTRACT

When soil structure varies in different soil types and the horizons of these soil types, it has a significant impact on water flow and contaminant transport in soils. This paper focuses on the effect of soil structure variations on the transport of pesticides in the soil above the water table. Transport of a pesticide (chlorotoluron) initially applied on soil columns taken from various horizons of three different soil types (Haplic Luvisol, Greyic Phaeozem and Haplic Cambisol) was studied using two scenarios of ponding infiltration. The highest infiltration rate and pesticide mobility were observed for the Bt(1) horizon of Haplic Luvisol that exhibited a well-developed prismatic structure. The lowest infiltration rate was measured for the Bw horizon of Haplic Cambisol, which had a poorly developed soil structure and a low fraction of large capillary pores and gravitational pores. Water infiltration rates were reduced during the experiments by a soil structure breakdown, swelling of clay and/or air entrapped in soil samples. The largest soil structure breakdown and infiltration decrease was observed for the Ap horizon of Haplic Luvisol due to the low aggregate stability of the initially well-aggregated soil. Single-porosity and dual-permeability (with matrix and macropore domains) flow models in HYDRUS-1D were used to estimate soil hydraulic parameters via numerical inversion using data from the first infiltration experiment. A fraction of the macropore domain in the dual-permeability model was estimated using the micro-morphological images. Final soil hydraulic parameters determined using the single-porosity and dual-permeability models were subsequently used to optimize solute transport parameters. To improve numerical inversion results, the two-site sorption model was also applied. Although structural changes observed during the experiment affected water flow and solute transport, the dual-permeability model together with the two-site sorption model proved to be able to approximate experimental data.


Subject(s)
Soil , Water Movements , Filtration , Porosity , Pressure
17.
Ecotoxicol Environ Saf ; 69(3): 374-80, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18067959

ABSTRACT

N-nitrosodimethylamine (NDMA) is a potential carcinogen frequently found in treated wastewater as a byproduct of chlorination. The potential for NDMA to contaminate the groundwater is a significant concern. A solute fate and transport model, Hydrus-1D, was used to evaluate the leaching potential of NDMA under different irrigation practices and soil properties. The results indicate that the risk of NDMA to reach the ground water is slim, when the reclaimed wastewater is applied under the customary conditions for landscape irrigation. The NDMA disappears in the reclaimed wastewater receiving soils rapidly through the microbial degradation and the volatilization processes. The factors that enhance the leaching risk are the soil hydraulic conductivity, the NDMA adsorption constants, and the irrigation intensity. When the hydraulic conductivity of soil is high, the NDMA adsorption constant of soil is low and/or the irrigation intensity is high, the NDMA leaching risk may dramatically increase. To reduce the NDMA leaching risk, it is imperative that the fields be irrigated at the proper volume and frequency and attention be paid to fields with soils having high-hydraulic conductivities and/or low-NDMA adsorption constants.


Subject(s)
Dimethylnitrosamine/analysis , Dimethylnitrosamine/toxicity , Environmental Pollutants/analysis , Soil Pollutants/analysis , Dimethylnitrosamine/isolation & purification , Kinetics , Models, Theoretical , Therapeutic Irrigation/methods , Water/analysis
18.
J Contam Hydrol ; 89(1-2): 107-35, 2007 Jan 05.
Article in English | MEDLINE | ID: mdl-17030463

ABSTRACT

Antibiotics, such as sulfadiazine, reach agricultural soils directly through manure of grazing livestock or indirectly through the spreading of manure or sewage sludge on the field. Knowledge about the fate of antibiotics in soils is crucial for assessing the environmental risk of these compounds, including possible transport to the groundwater. Transport of (14)C-labelled sulfadiazine was investigated in disturbed soil columns at a constant flow rate of 0.26 cm h(-1) near saturation. Sulfadiazine was applied in different concentrations for either a short or a long pulse duration. Breakthrough curves of sulfadiazine and the non-reactive tracer chloride were measured. At the end of the leaching period the soil concentration profiles were determined. The peak maxima of the breakthrough curves were delayed by a factor of 2 to 5 compared to chloride and the decreasing limbs are characterized by an extended tailing. However, the maximum relative concentrations differed as well as the eluted mass fractions, ranging from 18 to 83% after 500 h of leaching. To identify relevant sorption processes, breakthrough curves of sulfadiazine were fitted with a convective-dispersive transport model, considering different sorption concepts with one, two and three sorption sites. Breakthrough curves can be fitted best with a three-site sorption model, which includes two reversible kinetic and one irreversible sorption site. However, the simulated soil concentration profiles did not match the observations for all of the used models. Despite this incomplete process description, the obtained results have implications for the transport behavior of sulfadiazine in the field. Its leaching may be enhanced if it is frequently applied at higher concentrations.


Subject(s)
Models, Theoretical , Sulfadiazine/analysis , Water Movements , Adsorption , Chlorides/analysis , Models, Biological , Soil Pollutants/analysis , Water Pollutants, Chemical/analysis
19.
J Contam Hydrol ; 85(1-2): 1-32, 2006 May 05.
Article in English | MEDLINE | ID: mdl-16494966

ABSTRACT

Model predictions of pesticide transport in structured soils are complicated by multiple processes acting concurrently. In this study, the hydraulic, physical, and chemical nonequilibrium (HNE, PNE, and CNE, respectively) processes governing herbicide transport under variably saturated flow conditions were studied. Bromide (Br-), isoproturon (IPU, 3-(4-isoprpylphenyl)-1,1-dimethylurea) and terbuthylazine (TER, N2-tert-butyl-6-chloro-N4-ethyl-1,3,5-triazine-2,4-diamine) were applied to two soil columns. An aggregated Ap soil column and a macroporous, aggregated Ah soil column were irrigated at a rate of 1 cm h(-1) for 3 h. Two more irrigations at the same rate and duration followed in weekly intervals. Nonlinear (Freundlich) equilibrium and two-site kinetic sorption parameters were determined for IPU and TER using batch experiments. The observed water flow and Br- transport were inversely simulated using mobile-immobile (MIM), dual-permeability (DPM), and combined triple-porosity (DP-MIM) numerical models implemented in HYDRUS-1D, with improving correspondence between empirical data and model results. Using the estimated HNE and PNE parameters together with batch-test derived equilibrium sorption parameters, the preferential breakthrough of the weakly adsorbed IPU in the Ah soil could be reasonably well predicted with the DPM approach, whereas leaching of the strongly adsorbed TER was predicted less well. The transport of IPU and TER through the aggregated Ap soil could be described consistently only when HNE, PNE, and CNE were simultaneously accounted for using the DPM. Inverse parameter estimation suggested that two-site kinetic sorption in inter-aggregate flow paths was reduced as compared to within aggregates, and that large values for the first-order degradation rate were an artifact caused by irreversible sorption. Overall, our results should be helpful to enhance the understanding and modeling of multi-process pesticide transport through structured soils during variably saturated water flow.


Subject(s)
Herbicides/chemistry , Models, Chemical , Phenylurea Compounds/chemistry , Soil , Triazines/chemistry , Water Movements , Bromides/chemistry , Computer Simulation , Kinetics , Soil Pollutants , Water Pollutants, Chemical
20.
Environ Sci Technol ; 37(10): 2242-50, 2003 May 15.
Article in English | MEDLINE | ID: mdl-12785531

ABSTRACT

A conceptual model for colloid transport is developed that accounts for colloid attachment straining, and exclusion. Colloid attachment and detachment is modeled using first-order rate expressions, whereas straining is described using an irreversible first-order straining term that is depth dependent. Exclusion is modeled by adjusting transport parameters for colloid-accessible pore space. Fitting attachment and detachment model parameters to colloid transport data provided a reasonable description of effluent concentration curves, but the spatial distribution of retained colloids at the column inlet was severely underestimated for systems that exhibited significant colloid mass removal. A more physically realistic description of the colloid transport data was obtained by simulating both colloid attachment and straining. Fitted straining coefficients were found to systematically increase with increasing colloid size and decreasing median grain size. A correlation was developed to predict the straining coefficient from colloid and porous medium information. Numerical experiments indicated that increasing the colloid excluded volume of the pore space resulted in earlier breakthrough and higher peak effluent concentrations as a result of higher pore water velocities and lower residence times, respectively. Velocity enhancement due to colloid exclusion was predicted to increase with increasing exclusion volume and increasing soil gradation.


Subject(s)
Colloids/chemistry , Models, Theoretical , Water Movements , Water Pollutants , Fresh Water/chemistry , Geologic Sediments/chemistry , Porosity , Quartz/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...