Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Commun Signal ; 4(1): 31-8, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20195390

ABSTRACT

The lectin from Canavalia ensiformis (Concanavalin-A, ConA), one of the most abundant lectins known, enables one to mimic biological lectin/carbohydrate interactions that regulate extracellular matrix protein recognition. As such, ConA is known to induce membrane type-1 matrix metalloproteinase (MT1-MMP) which expression is increased in brain cancer. Given that MT1-MMP correlated to high expression of cyclooxygenase (COX)-2 in gliomas with increasing histological grade, we specifically assessed the early proinflammatory cellular signaling processes triggered by ConA in the regulation of COX-2. We found that treatment with ConA or direct overexpression of a recombinant MT1-MMP resulted in the induction of COX-2 expression. This increase in COX-2 was correlated with a concomitant decrease in phosphorylated AKT suggestive of cell death induction, and was independent of MT1-MMP's catalytic function. ConA- and MT1-MMP-mediated intracellular signaling of COX-2 was also confirmed in wild-type and in Nuclear Factor-kappaB (NF-kappaB) p65(-/-) mutant mouse embryonic fibroblasts (MEF), but was abrogated in NF-kappaB1 (p50)(-/-) and in I kappaB kinase (IKK) gamma(-/-) mutant MEF cells. Collectively, our results highlight an IKK/NF-kappaB-dependent pathway linking MT1-MMP-mediated intracellular signaling to the induction of COX-2. That signaling pathway could account for the inflammatory balance responsible for the therapy resistance phenotype of glioblastoma cells, and prompts for the design of new therapeutic strategies that target cell surface carbohydrate structures and MT1-MMP-mediated signaling. Concise summary Concanavalin-A (ConA) mimics biological lectin/carbohydrate interactions that regulate the proinflammatory phenotype of cancer cells through yet undefined signaling. Here we highlight an IKK/NF-kappaB-dependent pathway linking MT1-MMP-mediated intracellular signaling to the induction of cyclooxygenase-2, and that could be responsible for the therapy resistance phenotype of glioblastoma cells.

2.
Cancer Lett ; 279(2): 171-6, 2009 Jul 08.
Article in English | MEDLINE | ID: mdl-19264392

ABSTRACT

Recent profiling has identified the aminopeptidase N/CD13 inhibitor actinonin as a selective soluble secreted matrix metalloproteinase (MMP) inhibitor. Given that actinonin's effects against membrane-bound MMPs remain unknown and that MT1-MMP has been linked to chemo- and radio-therapy resistance in brain tumor development, we therefore assessed MT1-MMP functional inhibition by actinonin in U87 glioblastoma cells. We show that actinonin inhibits concanavalin-A (ConA)-induced proMMP-2 activation, while it does not inhibit ConA-induced MT1-MMP gene expression suggesting post-transcriptional effects of the drug possibly mediated through the membrane-anchored protease regulator RECK. Specific gene silencing of MT1-MMP with siRNA abrogated the ability of ConA to activate proMMP-2. Functional recombinant MT1-MMP whose constitutive expression led to proMMP-2 activation was also efficiently antagonized by actinonin. We provide evidence for actinonin's new therapeutic application in the direct targeting of MT1-MMP-mediated proMMP-2 activation, an essential step in both brain tumor infiltration and in brain tumor-associated angiogenesis.


Subject(s)
Antineoplastic Agents/pharmacology , CD13 Antigens/metabolism , Enzyme Precursors/metabolism , Matrix Metalloproteinase 14/metabolism , Matrix Metalloproteinase 2/metabolism , CD13 Antigens/antagonists & inhibitors , Cell Line, Tumor , Concanavalin A/pharmacology , Enzyme Activation , Glioblastoma , Humans , Hydroxamic Acids/pharmacology , Matrix Metalloproteinase Inhibitors , PHEX Phosphate Regulating Neutral Endopeptidase/metabolism , Protein Binding
3.
J Neuroinflammation ; 6: 8, 2009 Mar 09.
Article in English | MEDLINE | ID: mdl-19272160

ABSTRACT

BACKGROUND: The CD133(+) stem cell population in recurrent gliomas is associated with clinical features such as therapy resistance, blood-brain barrier disruption and, hence, tumor infiltration. Screening of a large panel of glioma samples increasing histological grade demonstrated frequencies of CD133(+) cells which correlated with high expression of cyclooxygenase (COX)-2 and of membrane type-1 matrix metalloproteinase (MT1-MMP). METHODS: We used qRT-PCR and immunoblotting to examine the molecular interplay between MT1-MMP and COX-2 gene and protein expression in parental, CD133(+), and neurospheres U87 glioma cell cultures. RESULTS: We found that CD133, COX-2 and MT1-MMP expression were enhanced when glioma cells were cultured in neurosphere conditions. A CD133(+)-enriched U87 glioma cell population, isolated from parental U87 cells with magnetic cell sorting technology, also grew as neurospheres and showed enhanced COX-2 expression. MT1-MMP gene silencing antagonized COX-2 expression in neurospheres, while overexpression of recombinant MT1-MMP directly triggered COX-2 expression in U87 cells independent from MT1-MMP's catalytic function. COX-2 induction by MT1-MMP was also validated in wild-type and in NF-kappaB p65-/- mutant mouse embryonic fibroblasts, but was abrogated in NF-kappaB 1 (p50-/-) mutant cells. CONCLUSION: We provide evidence for enhanced COX-2 expression in CD133(+) glioma cells, and direct cell-based evidence of NF-kappaB-mediated COX-2 regulation by MT1-MMP. The biological significance of such checkpoint control may account for COX-2-dependent mechanisms of inflammatory balance responsible of therapy resistance phenotype of cancer stem cells.


Subject(s)
Cyclooxygenase 2/metabolism , Glioblastoma/metabolism , Matrix Metalloproteinase 14/metabolism , NF-kappa B/metabolism , Animals , Cell Line , Cell Line, Tumor , Fibroblasts/physiology , Flow Cytometry , Gene Expression , Glioblastoma/pathology , Humans , Immunoblotting , Matrix Metalloproteinase 14/genetics , Mice , Mice, Knockout , NF-kappa B p50 Subunit/genetics , NF-kappa B p50 Subunit/metabolism , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , Transcription Factor RelA/genetics , Transcription Factor RelA/metabolism , Transfection
4.
FEBS Lett ; 582(5): 799-804, 2008 Mar 05.
Article in English | MEDLINE | ID: mdl-18267120

ABSTRACT

The contributions of membrane type-1 matrix metalloproteinase (MT1-MMP) and of the glucose-6-phosphate transporter (G6PT) in sphingosine-1-phosphate (S1P)-mediated Ca(2+) mobilization were assessed in glioblastoma cells. We show that gene silencing of MT1-MMP or G6PT decreased the extent of S1P-induced Ca(2+) mobilization, chemotaxis, and extracellular signal-related kinase phosphorylation. Chlorogenic acid and (-)-epigallocatechin-3-gallate, two diet-derived inhibitors of G6PT and of MT1-MMP, respectively, reduced S1P-mediated Ca(2+) mobilization. An intact MT1-MMP/G6PT signaling axis is thus required for efficient Ca(2+) mobilization in response to bioactive lipids such as S1P. Targeted inhibition of either MT1-MMP or G6PT may lead to reduced infiltrative and invasive properties of brain tumor cells.


Subject(s)
Antiporters/genetics , Calcium Signaling/drug effects , Gene Silencing , Glioblastoma/enzymology , Glioblastoma/pathology , Lysophospholipids/pharmacology , Matrix Metalloproteinase 14/genetics , Monosaccharide Transport Proteins/genetics , Sphingosine/analogs & derivatives , Chemotaxis/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Silencing/drug effects , Humans , Phosphorylation/drug effects , Sphingosine/pharmacology
5.
J Biol Chem ; 282(11): 8142-9, 2007 Mar 16.
Article in English | MEDLINE | ID: mdl-17229722

ABSTRACT

Bone marrow-derived stromal cells (BMSC) are avidly recruited by experimental vascularizing tumors, which implies that they must respond to tumor-derived growth factor cues. In fact, BMSC chemotaxis and cell survival are regulated, in part, by the membrane type-1 matrix metalloproteinase (MT1-MMP), an MMP also involved in pro-MMP-2 activation and in degradation of the extracellular matrix (ECM). Given that impaired chemotaxis was recently observed in bone marrow cells isolated from a glucose 6-phosphate transporter-deficient (G6PT-/-) mouse model, we sought to investigate the potential MT1-MMP/G6PT signaling axis in BMSC. We show that MT1-MMP-mediated activation of pro-MMP-2 by concanavalin A (ConA) correlated with an increase in the sub-G1 cell cycle phase as well as with cell necrosis, indicative of a decrease in BMSC survival. BMSC isolated from Egr-1-/- mouse or MT1-MMP gene silencing in BMSC with small interfering RNA (siMT1-MMP) antagonized both the ConA-mediated activation of pro-MMP-2 and the induction of cell necrosis. Overexpression of recombinant full-length MT1-MMP triggered necrosis and this was signaled through the cytoplasmic domain of MT1-MMP. ConA inhibited both the gene and protein expression of G6PT, while overexpression of recombinant G6PT inhibited MT1-MMP-mediated pro-MMP-2 activation but could not rescue BMSC from ConA-induced cell necrosis. Cell chemotaxis in response to the tumorigenic growth factor sphingosine 1-phosphate was significantly abrogated in siMT1-MMP BMSC and in chlorogenic acid-treated BMSC. Altogether, we provide evidence for an MT1-MMP/G6PT signaling axis that regulates BMSC survival, ECM degradation, and mobilization. This may lead to optimized clinical applications that use BMSC as a platform for the systemic delivery of therapeutic or anti-cancer recombinant proteins in vivo.


Subject(s)
Antiporters/biosynthesis , Bone Marrow Cells/cytology , Down-Regulation , Gene Expression Regulation , Matrix Metalloproteinase 14/physiology , Monosaccharide Transport Proteins/biosynthesis , Stromal Cells/cytology , Animals , Chemotaxis , Extracellular Matrix/metabolism , Glucose-6-Phosphate/metabolism , Hydroxamic Acids , Indoles/pharmacology , Lysophospholipids/pharmacology , Matrix Metalloproteinase 14/metabolism , Mice , Mice, Inbred C57BL , Recombinant Proteins/chemistry , Sphingosine/analogs & derivatives , Sphingosine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...