Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 295: 113092, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34182336

ABSTRACT

Recycling phosphorus (P) is crucial to meet future P demand for crop production. We investigated the possibility to use calcium phosphite (Ca-Phi) waste, an industrial by-product, as P fertilizer following the oxidation of phosphite (Phi) to phosphate (Pi) during green manure (GM) cropping in order to target P nutrition of subsequent maize crop. In a greenhouse experiment, four GM crops were fertilized (38 kg P ha-1) with Ca-Phi, triple super phosphate (TSP) or without P (Control) in sandy and clay soils. The harvested GM biomass (containing Phi after Ca-Phi fertilization) was incorporated into the soil before maize sowing. Incorporation of GM residues containing Phi slowed down organic carbon mineralization in clay soil and mass loss of GM residues in sandy soil. Microbial enzymatic activities were affected by Ca-Phi and TSP fertilization at the end of maize crop whereas microbial biomass was similarly influenced by TSP and Ca-Phi in both soils. Compared to Control, Ca-Phi and TSP increased similarly the available P (up to 5 mg P kg-1) in sandy soil, whereas in clay soil available P increased only with Ca-Phi (up to 6 mg P kg-1), indicating that Phi oxidation occurred during GM crops. Accordingly, no Phi was found in maize biomass. However, P fertilization did not enhance aboveground maize productivity and P export, likely because soil available P was not limiting. Overall, our results indicate that Ca-Phi might be used as P source for a subsequent crop since Phi undergoes oxidation during the preliminary GM growth.


Subject(s)
Manure , Phosphites , Agriculture , Calcium , Fertilization , Fertilizers/analysis , Nitrogen/analysis , Soil , Zea mays
2.
J Environ Manage ; 285: 112061, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33582477

ABSTRACT

The potential to use calcium phosphite (Ca-Phi) as phosphorus (P) fertilizer may represent an effective recycling of P-containing by-products. A greenhouse experiment was conducted to investigate the effect of Ca-Phi (38 kg P ha-1) on soil properties and the growth parameters of four green manure species in clay and sandy soils using Ca-Phi, TSP (triple superphosphate) and control (no fertilization) as treatments. Eight weeks after sowing, we measured aboveground biomass yield, phosphite (Phi) concentration in plant biomass, different soil P pools as well as microbial biomass nutrients. Compared to control, the addition of Ca-Phi did not negatively affect green manure yield, except for lupine (Lupinus albus L.) in clay soil. The Phi concentration in plant biomass varied across species and soil type with a maximum concentration of about 400 mg Phi kg-1 for mustard (Brassica juncea L.) in clay soil. Compared to control, TSP and Ca-Phi fertilization had a similar effect on different P pools and microbial biomass nutrients (C, N and P) although the response was soil-type dependent. In the sandy soil, after Ca-Phi addition the amount of available P (PNHCO3) increased to the same extent as in the TSP treatment (i.e. around 6 mg P kg-1) suggesting that Ca-Phi was, at least partly, oxidized. In the clay soil with high P fixing capacity, Ca-Phi promoted higher PNaHCO3 than TSP likely due to different solubility of chemical P forms. Additional studies are however required to better understand soil microbial responses and to quantify the P agronomical efficiency for the following crop under Ca-Phi fertilization.


Subject(s)
Fertilizers , Phosphites , Biomass , Calcium , Fertilizers/analysis , Manure , Phosphorus , Soil
3.
Ambio ; 44 Suppl 2: S252-62, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25681982

ABSTRACT

We analyzed the linearity of relationships between soil test P (STP) and cumulative phosphorus (P) budget using data from six long-term fertilized grassland sites in four countries: France (Ercé and Gramond), Switzerland (Les Verrières), Canada (Lévis), and Finland (Maaninka and Siikajoki). STP was determined according to existing national guidelines. A linear-plateau model was used to determine the presence of deflection points in the relationships. Deflection points with (x, y) coordinates were observed everywhere but Maaninka. Above the deflection point, a significant linear relationship was obtained (0.33 < r (2) < 0.72) at four sites, while below the deflection point, the relationship was not significant, with a negligible rate of STP decrease. The relationship was not linear over the range of STP encountered at most sites, suggesting a need for caution when using the P budget approach to predict STP changes in grasslands, particularly in situations of very low P fertilization. Our study provides insights and description of a tool to improve global P strategies aimed at maintaining STP at levels adequate for grassland production while reducing the risk of P pollution of water.


Subject(s)
Environmental Monitoring , Grassland , Phosphorus/analysis , Soil/chemistry , Canada , Finland , France , Switzerland
SELECTION OF CITATIONS
SEARCH DETAIL
...