Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Psychiatry Res Neuroimaging ; 269: 54-61, 2017 Nov 30.
Article in English | MEDLINE | ID: mdl-28938222

ABSTRACT

Attention deficit hyperactivity disorder (ADHD) is accompanied by resting-state alterations, including abnormal activity, connectivity and asymmetry of the default-mode network (DMN). Concurrently, recent studies suggested a link between ADHD and the presence of polymorphisms within the gene BAIAP2 (i.e., brain-specific angiogenesis inhibitor 1-associated protein 2), known to be differentially expressed in brain hemispheres. The clinical and neuroimaging correlates of this polymorphism are still unknown. We investigated the association between BAIAP2 polymorphisms and DMN functional connectivity (FC) asymmetry as well as behavioral measures in ADHD adults. Resting-state fMRI was acquired from 30 ADHD and 15 healthy adults. For each subject, rs7210438 and rs8079626 within the gene BAIAP2 were genotyped. ADHD severity, impulsiveness and anger were assessed for the ADHD group. Using multivariate analysis of variance, we found that genetic features do have an impact on DMN FC asymmetry. In particular, polymorphism rs8079626 affects medial frontal gyrus and inferior parietal lobule connectivity asymmetry, lower for AA than AG/GG carriers. Further, when combining FC asymmetry and the presence of the rs8079626 variant, we successfully predicted increased externalization of anger in ADHD. In conclusion, a complex interplay between genetic vulnerability and inter-hemispherical DMN FC asymmetry plays a role in emotion regulation in adult ADHD.


Subject(s)
Anger/physiology , Attention Deficit Disorder with Hyperactivity/diagnostic imaging , Attention Deficit Disorder with Hyperactivity/genetics , Cerebrum/diagnostic imaging , Cerebrum/physiology , Nerve Tissue Proteins/genetics , Adult , Brain Mapping/methods , Female , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Nerve Net/diagnostic imaging , Neural Pathways/diagnostic imaging , Neural Pathways/physiology , Prefrontal Cortex/diagnostic imaging
2.
Neuroscience ; 250: 364-71, 2013 Oct 10.
Article in English | MEDLINE | ID: mdl-23876323

ABSTRACT

In young individuals, caffeine-mediated blockade of adenosine receptors and vasoconstriction has direct repercussions on task-related activations, changes in functional connectivity, as well as global vascular effects. To date, no study has explored the effect of caffeine on brain activation patterns during highly demanding cognitive tasks in the elderly. This prospective, placebo-controlled crossover design comprises 24 healthy elderly individuals (mean age 68.8 ± 4.0 years, 17 females) performing a 2-back working memory (WM) task in functional magnetic resonance imaging (fMRI). Analyses include complimentary assessment of task-related activations (general linear model, GLM), functional connectivity (tensorial independent component analysis, TICA), and baseline perfusion (arterial spin labeling). Despite a reduction in whole-brain global perfusion (-22.7%), caffeine-enhanced task-related GLM activation in a local and distributed network is most pronounced in the bilateral striatum and to a lesser degree in the right middle and inferior frontal gyrus, bilateral insula, left superior and inferior parietal lobule as well as in the cerebellum bilaterally. TICA was significantly enhanced (+8.2%) in caffeine versus placebo in a distributed and task-relevant network including the pre-frontal cortex, the supplementary motor area, the ventral premotor cortex and the parietal cortex as well as the occipital cortex (visual stimuli) and basal ganglia. The inverse comparison of placebo versus caffeine had no significant difference. Activation strength of the task-relevant-network component correlated with response accuracy for caffeine yet not for placebo, indicating a selective cognitive effect of caffeine. The present findings suggest that acute caffeine intake enhances WM-related brain activation as well as functional connectivity of blood oxygen level-dependent fMRI in elderly individuals.


Subject(s)
Brain/drug effects , Caffeine/pharmacology , Central Nervous System Stimulants/pharmacology , Memory, Short-Term/drug effects , Neural Pathways/drug effects , Aged , Aged, 80 and over , Cerebrovascular Circulation/drug effects , Cross-Over Studies , Double-Blind Method , Female , Humans , Image Processing, Computer-Assisted , Linear Models , Magnetic Resonance Imaging , Male , Middle Aged , Oxygen/blood , Principal Component Analysis , Psychomotor Performance/drug effects , Spin Labels
SELECTION OF CITATIONS
SEARCH DETAIL
...