Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 14(10): e0223240, 2019.
Article in English | MEDLINE | ID: mdl-31618229

ABSTRACT

Tidal inlets are extremely dynamic environments that are often strongly modified by anthropogenic intervention. In this study, we describe the rapid evolution of a highly human-impacted tidal inlet, studied through repeated high-resolution multibeam surveys and geomorphometric analysis. We document the rapid change induced by new hard coastal structures built to protect the historical city of Venice (Italy). A new breakwater erected between 2011 and 2013 induced the formation of large scour holes with the consequent erosion of about 170 · 103 ± 15.6% m3 of sediment until 2016. The construction of a new island in the middle of the inlet and the restriction of the inlet channel caused a general change of the inlet sedimentary regime from depositional to erosive with a net sediment loss of about 612 · 103 ± 42.7% m3, a reduction of the dune field area by more than 50% in about five years, and a coarsening in the sediment distribution. Our results give new insight on the tidal inlet resilience to changes, distinguishing two different phases in its recent evolution: (i) a very rapid response (from 2011 to 2013) of the seafloor morphology with scour-hole erosion at the new breakwater tips at a rate of about 45⋅103 m3/year and the disappearing of dune fields at a rate of 104⋅103 m2/year; and (ii) a general slowdown of the erosive processes from 2013 to 2016. Nevertheless, the erosion continues at the breakwater, though at a reduced rate, possibly representing a threat to the hard structure. In view of global mean sea level rise and consequent proliferation of hard structures along the coast all over the world, the combined use of very high resolution multibeam surveys and repeatable geomorphometric analysis proposed in this study will be crucial for the monitoring and future management of coastal environments.


Subject(s)
Bays , Conservation of Natural Resources , Geologic Sediments , Water Movements , Construction Industry , Italy
2.
Sci Data ; 4: 170121, 2017 09 05.
Article in English | MEDLINE | ID: mdl-28872636

ABSTRACT

Tidal channels are crucial for the functioning of wetlands, though their morphological properties, which are relevant for seafloor habitats and flow, have been understudied so far. Here, we release a dataset composed of Digital Terrain Models (DTMs) extracted from a total of 2,500 linear kilometres of high-resolution multibeam echosounder (MBES) data collected in 2013 covering the entire network of tidal channels and inlets of the Venice Lagoon, Italy. The dataset comprises also the backscatter (BS) data, which reflect the acoustic properties of the seafloor, and the tidal current fields simulated by means of a high-resolution three-dimensional unstructured hydrodynamic model. The DTMs and the current fields help define how morphological and benthic properties of tidal channels are affected by the action of currents. These data are of potential broad interest not only to geomorphologists, oceanographers and ecologists studying the morphology, hydrodynamics, sediment transport and benthic habitats of tidal environments, but also to coastal engineers and stakeholders for cost-effective monitoring and sustainable management of this peculiar shallow coastal system.

SELECTION OF CITATIONS
SEARCH DETAIL
...