Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Neurology ; 99(9): e865-e876, 2022 08 30.
Article in English | MEDLINE | ID: mdl-36038279

ABSTRACT

BACKGROUND AND OBJECTIVES: Limited data suggest that quantitative MRI (qMRI) measures have potential to be used as trial outcome measures in sporadic inclusion body myositis (sIBM) and as a noninvasive assessment tool to study sIBM muscle pathologic processes. Our aim was to evaluate changes in muscle structure and composition using a comprehensive multiparameter set of qMRI measures and to assess construct validity and responsiveness of qMRI measures in people with sIBM. METHODS: This was a prospective observational cohort study with assessments at baseline (n = 30) and 1 year (n = 26). qMRI assessments include thigh muscle volume (TMV), inter/intramuscular adipose tissue (IMAT), muscle fat fraction (FF), muscle inflammation (T2 relaxation time), IMAT from T2* relaxation (T2*-IMAT), intermuscular connective tissue from T2* relaxation (T2*-IMCT), and muscle macromolecular structure from the magnetization transfer ratio (MTR). Physical performance assessments include sIBM Physical Functioning Assessment (sIFA), 6-minute walk distance, and quantitative muscle testing of the quadriceps. Correlations were assessed using the Spearman correlation coefficient. Responsiveness was assessed using the standardized response mean (SRM). RESULTS: After 1 year, we observed a reduction in TMV (6.8%, p < 0.001) and muscle T2 (6.7%, p = 0.035), an increase in IMAT (9.7%, p < 0.001), FF (11.2%, p = 0.030), connective tissue (22%, p = 0.995), and T2*-IMAT (24%, p < 0.001), and alteration in muscle macromolecular structure (ΔMTR = -26%, p = 0.002). A decrease in muscle T2 correlated with an increase in T2*-IMAT (r = -0.47, p = 0.008). Deposition of connective tissue and IMAT correlated with deterioration in sIFA (r = 0.38, p = 0.032; r = 0.34, p = 0.048; respectively), whereas a decrease in TMV correlated with a decrease in quantitative muscle testing (r = 0.36, p = 0.035). The most responsive qMRI measures were T2*-IMAT (SRM = 1.50), TMV (SRM = -1.23), IMAT (SRM = 1.20), MTR (SRM = -0.83), and T2 relaxation time (SRM = -0.65). DISCUSSION: Progressive deterioration in muscle quality measured by qMRI is associated with a decline in physical performance. Inflammation may play a role in triggering fat infiltration into muscle. qMRI provides valid and responsive measures that might prove valuable in sIBM experimental trials and assessment of muscle pathologic processes. CLASSIFICATION OF EVIDENCE: This study provides Class I evidence that qMRI outcome measures are associated with physical performance measures in patients with sIBM.


Subject(s)
Myositis, Inclusion Body , Adipose Tissue/metabolism , Body Composition , Humans , Inflammation/pathology , Magnetic Resonance Imaging , Muscle, Skeletal/pathology , Myositis, Inclusion Body/diagnostic imaging , Myositis, Inclusion Body/pathology , Prospective Studies
2.
Eur J Radiol ; 130: 109164, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32688240

ABSTRACT

PURPOSE: Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is a treatable, immune-mediated condition characterised by progressive or relapsing motor and sensory neurological deficits. The diagnosis is based on a combination of clinical, neurophysiological and supportive criteria, but can be challenging. In this study, we quantified the diameter and cross-sectional area of the lumbosacral nerve roots, and explored the imaging characteristics of the sciatic nerves, in patients with CIDP versus healthy controls using MRI. METHODS: MRI of the lumbosacral plexus and both thighs was performed at 3 T. Orthogonal diameter and cross-sectional area of the lumbosacral nerve roots were measured, along with sciatic nerve cross-sectional area at the mid-thigh level. The MRI appearance of the sciatic nerves was also evaluated qualitatively. All measurements were performed by an observer blinded to the diagnosis. RESULTS: 10 patients with CIDP and 10 healthy controls (age and sex-matched) were studied. Lumbosacral nerve root diameter and cross-sectional area were significantly increased in patients with CIDP compared to controls (mean diameter 6.0 ±â€¯1.1 mm vs 4.8 ±â€¯0.3 mm; p = 0.006), with a high sensitivity (89 %) and specificity (90 %) on ROC analysis. Sciatic nerve cross sectional area was also significantly increased in the CIDP group, and was accompanied by qualitative MRI changes. CONCLUSIONS: Quantitative MRI reveals significant hypertrophy of the lumbosacral nerve roots and sciatic nerves in patients with CIDP compared to controls. This study provides further evidence for the inclusion of lumbosacral nerve root and sciatic nerve hypertrophy on MRI as a supportive feature in the diagnostic criteria for CIDP.


Subject(s)
Magnetic Resonance Imaging/methods , Polyradiculoneuropathy, Chronic Inflammatory Demyelinating/diagnostic imaging , Polyradiculoneuropathy, Chronic Inflammatory Demyelinating/pathology , Sciatic Nerve/diagnostic imaging , Sciatic Nerve/pathology , Adult , Aged , Female , Humans , Hypertrophy , Lumbosacral Plexus/diagnostic imaging , Male , Middle Aged , Prospective Studies , ROC Curve , Young Adult
3.
Neurology ; 93(9): e895-e907, 2019 08 27.
Article in English | MEDLINE | ID: mdl-31391248

ABSTRACT

OBJECTIVE: To investigate the use of muscle MRI for the differential diagnosis and as a disease progression biomarker for 2 major forms of motor neuron disorders: spinal bulbar muscular atrophy (SBMA) and amyotrophic lateral sclerosis (ALS). METHODS: We applied quantitative 3-point Dixon and semiquantitative T1-weighted and short tau inversion recovery (STIR) imaging to bulbar and lower limb muscles and performed clinical and functional assessments in ALS (n = 21) and SBMA (n = 21), alongside healthy controls (n = 16). Acquired images were analyzed for the presence of fat infiltration or edema as well as specific patterns of muscle involvement. Quantitative MRI measurements were correlated with clinical measures of disease severity in ALS and SBMA. RESULTS: Quantitative imaging revealed significant fat infiltration in bulbar (p < 0.001) and limb muscles in SBMA compared to controls (thigh: p < 0.001; calf: p = 0.001), identifying a characteristic pattern of muscle involvement. In ALS, semiquantitative STIR imaging detected marked hyperintensities in lower limb muscles, distinguishing ALS from SBMA and controls. Finally, MRI measurements correlated significantly with clinical scales of disease severity in both ALS and SBMA. CONCLUSIONS: Our findings show that muscle MRI differentiates between SBMA and ALS and correlates with disease severity, supporting its use as a diagnostic tool and biomarker for disease progression. This highlights the clinical utility of muscle MRI in motor neuron disorders and contributes to establish objective outcome measures, which is crucial for the development of new drugs.


Subject(s)
Amyotrophic Lateral Sclerosis/diagnostic imaging , Muscle, Skeletal/diagnostic imaging , Muscular Atrophy, Spinal/diagnostic imaging , Case-Control Studies , Cross-Sectional Studies , Diagnosis, Differential , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Prospective Studies , Severity of Illness Index
4.
Ann Clin Transl Neurol ; 6(6): 1033-1045, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31211167

ABSTRACT

OBJECTIVE: Limb girdle muscular dystrophy type R9 (LGMD R9) is an autosomal recessive muscle disease for which there is currently no causative treatment. The development of putative therapies requires sensitive outcome measures for clinical trials in this slowly progressing condition. This study extends functional assessments and MRI muscle fat fraction measurements in an LGMD R9 cohort across 6 years. METHODS: Twenty-three participants with LGMD R9, previously assessed over a 1-year period, were re-enrolled at 6 years. Standardized functional assessments were performed including: myometry, timed tests, and spirometry testing. Quantitative MRI was used to measure fat fraction in lower limb skeletal muscle groups. RESULTS: At 6 years, all 14 muscle groups assessed demonstrated significant increases in fat fraction, compared to eight groups in the 1-year follow-up study. In direct contrast to the 1-year follow-up, the 6-min walk test, 10-m walk or run, timed up and go, stair ascend, stair descend and chair rise demonstrated significant decline. Among the functional tests, only FVC significantly declined over both the 1- and 6-year studies. INTERPRETATION: These results further support fat fraction measurements as a primary outcome measure alongside functional assessments. The most appropriate individual muscles are the vastus lateralis, gracilis, sartorius, and gastrocnemii. Using composite groups of lower leg muscles, thigh muscles, or triceps surae, yielded high standardized response means (SRMs). Over 6 years, quantitative fat fraction assessment demonstrated higher SRM values than seen in functional tests suggesting greater responsiveness to disease progression.


Subject(s)
Muscle, Skeletal/physiopathology , Muscular Dystrophies, Limb-Girdle/physiopathology , Adult , Cohort Studies , Disease Progression , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Outcome Assessment, Health Care
5.
J Neurol Neurosurg Psychiatry ; 90(8): 895-906, 2019 08.
Article in English | MEDLINE | ID: mdl-30995999

ABSTRACT

OBJECTIVES: Hereditary sensory neuropathy type 1 (HSN1) is a rare, slowly progressive neuropathy causing profound sensory deficits and often severe motor loss. L-serine supplementation is a possible candidate therapy but the lack of responsive outcome measures is a barrier for undertaking clinical trials in HSN1. We performed a 12-month natural history study to characterise the phenotype of HSN1 and to identify responsive outcome measures. METHODS: Assessments included Charcot-Marie-Tooth Neuropathy Score version 2 (CMTNSv2), CMTNSv2-Rasch modified, nerve conduction studies, quantitative sensory testing, intraepidermal nerve fibre density (thigh), computerised myometry (lower limbs), plasma 1-deoxysphingolipid levels, calf-level intramuscular fat accumulation by MRI and patient-based questionnaires (Neuropathic Pain Symptom Inventory and 36-Short Form Health Survey version 2 [SF-36v2]). RESULTS: 35 patients with HSN1 were recruited. There was marked heterogeneity in the phenotype mainly due to differences between the sexes: males generally more severely affected. The outcome measures that significantly changed over 1 year and correlated with CMTNSv2, SF-36v2-physical component and disease duration were MRI determined calf intramuscular fat accumulation (mean change in overall calf fat fraction 2.36%, 95% CI 1.16 to 3.55, p=0.0004), pressure pain threshold on the hand (mean change 40 kPa, 95% CI 0.7 to 80, p=0.046) and myometric measurements of ankle plantar flexion (median change -0.5 Nm, IQR -9.5 to 0, p=0.0007), ankle inversion (mean change -0.89 Nm, 95% CI -1.66 to -0.12, p=0.03) and eversion (mean change -1.61 Nm, 95% CI -2.72 to -0.51, p=0.006). Intramuscular calf fat fraction was the most responsive outcome measure. CONCLUSION: MRI determined calf muscle fat fraction shows validity and high responsiveness over 12 months and will be useful in HSN1 clinical trials.


Subject(s)
Adipose Tissue/diagnostic imaging , Hereditary Sensory and Autonomic Neuropathies , Magnetic Resonance Imaging , Muscle, Skeletal/diagnostic imaging , Outcome Assessment, Health Care , Predictive Value of Tests , Adult , Disease Progression , Female , Hereditary Sensory and Autonomic Neuropathies/diagnostic imaging , Hereditary Sensory and Autonomic Neuropathies/genetics , Humans , Lower Extremity/diagnostic imaging , Male , Phenotype , Surveys and Questionnaires
6.
Neurology ; 91(12): e1125-e1129, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30120135

ABSTRACT

OBJECTIVE: To translate the quantitative MRC Centre MRI protocol in Charcot-Marie-Tooth disease type 1A (CMT1A) to a second site; validate its responsiveness in an independent cohort; and test the benefit of participant stratification to increase outcome measure responsiveness. METHODS: Three healthy volunteers were scanned for intersite standardization. For the longitudinal patient study, 11 patients with CMT1A were recruited with 10 patients rescanned at a 12-month interval. Three-point Dixon MRI of leg muscles was performed to generate fat fraction (FF) maps, transferred to a central site for quality control and analysis. Clinical data collected included CMT Neuropathy Score. RESULTS: Test-retest reliability of FF within individual healthy calf muscles at the remote site was excellent: intraclass correlation coefficient 0.79, limits of agreement -0.67 to +0.85 %FF. In patients, mean calf muscle FF was 21.0% and correlated strongly with disease severity and age. Calf muscle FF significantly increased over 12 months (+1.8 ± 1.7 %FF, p = 0.009). Patients with baseline FF >10% showed a 12-month FF increase of 2.9% ± 1.3% (standardized response mean = 2.19). CONCLUSIONS: We have validated calf muscle FF as an outcome measure in an independent cohort of patients with CMT1A. Responsiveness is significantly improved by enrolling a stratified patient cohort with baseline calf FF >10%.


Subject(s)
Adipose Tissue/diagnostic imaging , Charcot-Marie-Tooth Disease/diagnostic imaging , Muscle, Skeletal/diagnostic imaging , Reproducibility of Results , Adult , Age Factors , Charcot-Marie-Tooth Disease/diagnosis , Disease Progression , Female , Humans , Lower Extremity/diagnostic imaging , Magnetic Resonance Imaging , Male , Middle Aged , Predictive Value of Tests , Time Factors , Young Adult
7.
Front Neurol ; 9: 9, 2018.
Article in English | MEDLINE | ID: mdl-29434565

ABSTRACT

Subjects with Duchenne Muscular Dystrophy (DMD) suffer from progressive muscle damage leading to diaphragmatic weakness that ultimately requires ventilation. Emerging treatments have generated interest in better characterizing the natural history of respiratory impairment in DMD and responses to therapy. Dynamic (cine) Magnetic Resonance Imaging (MRI) may provide a more sensitive measure of diaphragm function in DMD than the commonly used spirometry. This study presents an analysis pipeline for measuring parameters of diaphragmatic motion from dynamic MRI and its application to investigate MRI measures of respiratory function in both healthy controls and non-ambulant DMD boys. We scanned 13 non-ambulant DMD boys and 10 age-matched healthy male volunteers at baseline, with a subset (n = 10, 10, 8) of the DMD subjects also assessed 3, 6, and 12 months later. Spirometry-derived metrics including forced vital capacity were recorded. The MRI-derived measures included the lung cross-sectional area (CSA), the anterior, central, and posterior lung lengths in the sagittal imaging plane, and the diaphragm length over the time-course of the dynamic MRI. Regression analyses demonstrated strong linear correlations between lung CSA and the length measures over the respiratory cycle, with a reduction of these correlations in DMD, and diaphragmatic motions that contribute less efficiently to changing lung capacity in DMD. MRI measures of pulmonary function were reduced in DMD, controlling for height differences between the groups: at maximal inhalation, the maximum CSA and the total distance of motion of the diaphragm were 45% and 37% smaller. MRI measures of pulmonary function were correlated with spirometry data and showed relationships with disease progression surrogates of age and months non-ambulatory, suggesting that they provide clinically meaningful information. Changes in the MRI measures over 12 months were consistent with weakening of diaphragmatic and inter-costal muscles and progressive diaphragm dysfunction. In contrast, longitudinal changes were not seen in conventional spirometry measures during the same period. Dynamic MRI measures of thoracic muscle and pulmonary function are, therefore, believed to detect meaningful differences between healthy controls and DMD and may be sensitive to changes in function over relatively short periods of follow-up in non-ambulant boys with DMD.

8.
J Neurol ; 264(10): 2053-2067, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28669118

ABSTRACT

The muscular dystrophies are rare orphan diseases, characterized by progressive muscle weakness: the most common and well known is Duchenne muscular dystrophy which affects young boys and progresses quickly during childhood. However, over 70 distinct variants have been identified to date, with different rates of progression, implications for morbidity, mortality, and quality of life. There are presently no curative therapies for these diseases, but a range of potential therapies are presently reaching the stage of multi-centre, multi-national first-in-man clinical trials. There is a need for sensitive, objective end-points to assess the efficacy of the proposed therapies. Present clinical measurements are often too dependent on patient effort or motivation, and lack sensitivity to small changes, or are invasive. Quantitative MRI to measure the fat replacement of skeletal muscle by either chemical shift imaging methods (Dixon or IDEAL) or spectroscopy has been demonstrated to provide such a sensitive, objective end-point in a number of studies. This review considers the importance of the outcome measures, discusses the considerations required to make robust measurements and appropriate quality assurance measures, and draws together the existing literature for cross-sectional and longitudinal cohort studies using these methods in muscular dystrophy.


Subject(s)
Adipose Tissue/diagnostic imaging , Magnetic Resonance Imaging/methods , Muscular Dystrophies/complications , Humans , Image Processing, Computer-Assisted , Muscle, Skeletal/diagnostic imaging
9.
NMR Biomed ; 29(12): 1800-1812, 2016 12.
Article in English | MEDLINE | ID: mdl-27809381

ABSTRACT

Quantifying muscle water T2 (T2 -water) independently of intramuscular fat content is essential in establishing T2 -water as an outcome measure for imminent new therapy trials in neuromuscular diseases. IDEAL-CPMG combines chemical shift fat-water separation with T2 relaxometry to obtain such a measure. Here we evaluate the reproducibility and B1 sensitivity of IDEAL-CPMG T2 -water and fat fraction (f.f.) values in healthy subjects, and demonstrate the potential of the method to quantify T2 -water variation in diseased muscle displaying varying degrees of fatty infiltration. The calf muscles of 11 healthy individuals (40.5 ± 10.2 years) were scanned twice at 3 T with an inter-scan interval of 4 weeks using IDEAL-CPMG, and 12 patients with hypokalemic periodic paralysis (HypoPP) (42.3 ± 11.5 years) were also imaged. An exponential was fitted to the signal decay of the separated water and fat components to determine T2 -water and the fat signal amplitude muscle regions manually segmented. Overall mean calf-level muscle T2 -water in healthy subjects was 31.2 ± 2.0 ms, without significant inter-muscle differences (p = 0.37). Inter-subject and inter-scan coefficients of variation were 5.7% and 3.2% respectively for T2 -water and 41.1% and 15.4% for f.f. Bland-Altman mean bias and ±95% coefficients of repeatability were for T2 -water (0.15, -2.65, 2.95) ms and f.f. (-0.02, -1.99, 2.03)%. There was no relationship between T2 -water (ρ = 0.16, p = 0.07) or f.f. (ρ = 0.03, p = 0.7761) and B1 error or any correlation between T2 -water and f.f. in the healthy subjects (ρ = 0.07, p = 0.40). In HypoPP there was a measurable relationship between T2 -water and f.f. (ρ = 0.59, p < 0.001). IDEAL-CPMG provides a feasible way to quantify T2 -water in muscle that is reproducible and sensitive to meaningful physiological changes without post hoc modeling of the fat contribution. In patients, IDEAL-CPMG measured elevations in T2 -water and f.f. while showing a weak relationship between these parameters, thus showing promise as a practical means of quantifying muscle water in patient populations.


Subject(s)
Adipose Tissue/diagnostic imaging , Body Water/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Muscle Weakness/diagnostic imaging , Muscle, Skeletal/diagnostic imaging , Adult , Algorithms , Feasibility Studies , Female , Humans , Image Enhancement/methods , Male , Middle Aged , Reproducibility of Results , Sensitivity and Specificity , Signal Processing, Computer-Assisted
10.
PLoS One ; 11(9): e0162542, 2016.
Article in English | MEDLINE | ID: mdl-27649492

ABSTRACT

OBJECTIVE: A number of promising experimental therapies for Duchenne muscular dystrophy (DMD) are emerging. Clinical trials currently rely on invasive biopsies or motivation-dependent functional tests to assess outcome. Quantitative muscle magnetic resonance imaging (MRI) could offer a valuable alternative and permit inclusion of non-ambulant DMD subjects. The aims of our study were to explore the responsiveness of upper-limb MRI muscle-fat measurement as a non-invasive objective endpoint for clinical trials in non-ambulant DMD, and to investigate the relationship of these MRI measures to those of muscle force and function. METHODS: 15 non-ambulant DMD boys (mean age 13.3 y) and 10 age-gender matched healthy controls (mean age 14.6 y) were recruited. 3-Tesla MRI fat-water quantification was used to measure forearm muscle fat transformation in non-ambulant DMD boys compared with healthy controls. DMD boys were assessed at 4 time-points over 12 months, using 3-point Dixon MRI to measure muscle fat-fraction (f.f.). Images from ten forearm muscles were segmented and mean f.f. and cross-sectional area recorded. DMD subjects also underwent comprehensive upper limb function and force evaluation. RESULTS: Overall mean baseline forearm f.f. was higher in DMD than in healthy controls (p<0.001). A progressive f.f. increase was observed in DMD over 12 months, reaching significance from 6 months (p<0.001, n = 7), accompanied by a significant loss in pinch strength at 6 months (p<0.001, n = 9) and a loss of upper limb function and grip force observed over 12 months (p<0.001, n = 8). CONCLUSIONS: These results support the use of MRI muscle f.f. as a biomarker to monitor disease progression in the upper limb in non-ambulant DMD, with sensitivity adequate to detect group-level change over time intervals practical for use in clinical trials. Clinical validity is supported by the association of the progressive fat transformation of muscle with loss of muscle force and function.


Subject(s)
Magnetic Resonance Imaging/methods , Muscle, Skeletal/diagnostic imaging , Muscular Dystrophy, Duchenne/diagnostic imaging , Upper Extremity/diagnostic imaging , Adolescent , Child , Fats/metabolism , Forearm/diagnostic imaging , Forearm/physiopathology , Humans , Longitudinal Studies , Male , Muscle Strength/physiology , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiopathology , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/physiopathology , Time Factors , Upper Extremity/physiopathology , Water/metabolism
11.
Muscle Nerve ; 54(2): 211-9, 2016 08.
Article in English | MEDLINE | ID: mdl-26789134

ABSTRACT

INTRODUCTION: In this study we investigated muscle magnetic resonance imaging in congenital myasthenic syndromes (CMS). METHODS: Twenty-six patients with 9 CMS subtypes and 10 controls were imaged. T1-weighted (T1w) and short-tau inversion recovery (STIR) 3-Tesla MRI images obtained at thigh and calf levels were scored for severity. RESULTS: Overall mean the T1w score was increased in GFPT1 and DPAGT1 CMS. T1w scans of the AChR-deficiency, COLQ, and CHAT subjects were indistinguishable from controls. STIR images from CMS patients did not differ significantly from those of controls. Mean T1w score correlated with age in the CMS cohort. CONCLUSIONS: MRI appearances ranged from normal to marked abnormality. T1w images seem to be especially abnormal in some CMS caused by mutations of proteins involved in the glycosylation pathway. A non-selective pattern of fat infiltration or a normal-appearing scan in the setting of significant clinical weakness should suggest CMS as a potential diagnosis. Muscle MRI could play a role in differentiating CMS subtypes. Muscle Nerve 54: 211-219, 2016.


Subject(s)
Magnetic Resonance Imaging , Muscle, Skeletal/diagnostic imaging , Myasthenic Syndromes, Congenital/diagnostic imaging , Myasthenic Syndromes, Congenital/pathology , Adolescent , Adult , Female , Humans , Image Processing, Computer-Assisted , Male , Middle Aged , Myasthenic Syndromes, Congenital/genetics , Young Adult
12.
Lancet Neurol ; 15(1): 65-77, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26549782

ABSTRACT

BACKGROUND: A substantial impediment to progress in trials of new therapies in neuromuscular disorders is the absence of responsive outcome measures that correlate with patient functional deficits and are sensitive to early disease processes. Irrespective of the primary molecular defect, neuromuscular disorder pathological processes include disturbance of intramuscular water distribution followed by intramuscular fat accumulation, both quantifiable by MRI. In pathologically distinct neuromuscular disorders, we aimed to determine the comparative responsiveness of MRI outcome measures over 1 year, the validity of MRI outcome measures by cross-sectional correlation against functionally relevant clinical measures, and the sensitivity of specific MRI indices to early muscle water changes before intramuscular fat accumulation beyond the healthy control range. METHODS: We did a prospective observational cohort study of patients with either Charcot-Marie-Tooth disease 1A or inclusion body myositis who were attending the inherited neuropathy or muscle clinics at the Medical Research Council (MRC) Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, London, UK. Genetic confirmation of the chromosome 17p11.2 duplication was required for Charcot-Marie-Tooth disease 1A, and classification as pathologically or clinically definite by MRC criteria was required for inclusion body myositis. Exclusion criteria were concomitant diseases and safety-related MRI contraindications. Healthy age-matched and sex-matched controls were also recruited. Assessments were done at baseline and 1 year. The MRI outcomes-fat fraction, transverse relaxation time (T2), and magnetisation transfer ratio (MTR)-were analysed during the 12-month follow-up, by measuring correlation with functionally relevant clinical measures, and for T2 and MTR, sensitivity in muscles with fat fraction less than the 95th percentile of the control group. FINDINGS: Between Jan 19, 2010, and July 7, 2011, we recruited 20 patients with Charcot-Marie-Tooth disease 1A, 20 patients with inclusion body myositis, and 29 healthy controls (allocated to one or both of the 20-participant matched-control subgroups). Whole muscle fat fraction increased significantly during the 12-month follow-up at calf level (mean absolute change 1.2%, 95% CI 0.5-1.9, p=0.002) but not thigh level (0.2%, -0.2 to 0.6, p=0.38) in patients with Charcot-Marie-Tooth disease 1A, and at calf level (2.6%, 1.3-4.0, p=0.002) and thigh level (3.3%, 1.8-4.9, p=0.0007) in patients with inclusion body myositis. Fat fraction correlated with the lower limb components of the inclusion body myositis functional rating score (ρ=-0.64, p=0.002) and the Charcot-Marie-Tooth examination score (ρ=0.63, p=0.003). Longitudinal T2 and MTR changed consistently with fat fraction but more variably. In muscles with a fat fraction lower than the control group 95th percentile, T2 was increased in patients compared with controls (regression coefficients: inclusion body myositis thigh 4.0 ms [SE 0.5], calf 3.5 ms [0.6]; Charcot-Marie-Tooth 1A thigh 1.0 ms [0.3], calf 2.0 ms [0.3]) and MTR reduced compared with controls (inclusion body myositis thigh -1.5 percentage units [pu; 0.2], calf -1.1 pu [0.2]; Charcot-Marie-Tooth 1A thigh -0.3 pu [0.1], calf -0.7 pu [0.1]). INTERPRETATION: MRI outcome measures can monitor intramuscular fat accumulation with high responsiveness, show validity by correlation with conventional functional measures, and detect muscle water changes preceding marked intramuscular fat accumulation. Confirmation of our results in further cohorts with these and other muscle-wasting disorders would suggest that MRI biomarkers might prove valuable in experimental trials. FUNDING: Medical Research Council UK.


Subject(s)
Charcot-Marie-Tooth Disease/diagnosis , Disease Progression , Magnetic Resonance Imaging/trends , Adult , Aged , Biomarkers , Charcot-Marie-Tooth Disease/epidemiology , Cohort Studies , Female , Follow-Up Studies , Humans , Longitudinal Studies , Male , Middle Aged , Neuromuscular Diseases/diagnosis , Neuromuscular Diseases/epidemiology , Prospective Studies
13.
Eur Radiol ; 26(1): 130-7, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25994195

ABSTRACT

OBJECTIVES: Conventional and quantitative MRI was performed in patients with chronic progressive external ophthalmoplegia (CPEO), a common manifestation of mitochondrial disease, to characterise MRI findings in the extra-ocular muscles (EOMs) and investigate whether quantitative MRI provides clinically relevant measures of disease. METHODS: Patients with CPEO due to single mitochondrial DNA deletions were compared with controls. Range of eye movement (ROEM) measurements, peri-orbital 3 T MRI T1-weighted (T1w) and short-tau-inversion-recovery (STIR) images, and T2 relaxation time maps were obtained. Blinded observers graded muscle atrophy and T1w/STIR hyperintensity. Cross-sectional areas and EOM mean T2s were recorded and correlated with clinical parameters. RESULTS: Nine patients and nine healthy controls were examined. Patients had reduced ROEM (patients 13.3°, controls 49.3°, p < 0.001), greater mean atrophy score and increased T1w hyperintensities. EOM mean cross-sectional area was 43 % of controls and mean T2s were prolonged (patients 75.6 ± 7.0 ms, controls 55.2 ± 4.1 ms, p < 0.001). ROEM correlated negatively with EOM T2 (rho = -0.89, p < 0.01), whilst cross-sectional area failed to correlate with any clinical measures. CONCLUSIONS: MRI demonstrates EOM atrophy, characteristic signal changes and prolonged T2 in CPEO. Correlation between elevated EOM T2 and ROEM impairment represents a potential measure of disease severity that warrants further evaluation. KEY POINTS: Chronic progressive external ophthalmoplegia is a common clinical manifestation of mitochondrial disease. • Existing extra-ocular muscle MRI data in CPEO reports variable radiological findings. MRI confirmed EOM atrophy and characteristic signal changes in CPEO. EOM T2 was significantly elevated in CPEO and correlated negatively with ocular movements. EOM T2 represents a potential quantitative measure of disease severity in CPEO.


Subject(s)
Magnetic Resonance Imaging/methods , Mitochondrial Diseases/complications , Oculomotor Muscles/pathology , Ophthalmoplegia, Chronic Progressive External/diagnosis , Adult , Female , Humans , Male , Middle Aged , Mitochondrial Diseases/diagnosis , Mitochondrial Diseases/genetics , Ophthalmoplegia, Chronic Progressive External/etiology , Ophthalmoplegia, Chronic Progressive External/genetics , Young Adult
14.
Eur Radiol ; 24(7): 1610-20, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24748539

ABSTRACT

OBJECTIVES: Quantitative magnetic resonance imaging (MRI) can potentially meet the pressing need for objective, sensitive, reproducible outcome measures in neuromuscular disease trials. We tested, in healthy volunteers, the consistency, reliability and sensitivity to normal inter-subject variation of MRI methods targeted to lower limb muscle pathology to inform the design of practical but comprehensive MRI outcome measure protocols for use in imminent patient studies. METHODS: Forty-seven healthy volunteers, age 21-81 years, were subject at 3T to three-point Dixon fat-fraction measurement, T1-relaxometry, T2-relaxometry and magnetisation transfer ratio (MTR) imaging at mid-thigh and mid-calf level bilaterally. Fifteen subjects underwent repeat imaging at 2 weeks. RESULTS: Mean between-muscle fat fraction and T2 differences were small, but significant (p < 0.001). Fat fraction and T 2 correlated positively, and MTR negatively with subject age in both the thigh and calf, with similar significant correlations with weight at thigh level only (p < 0.001 to p < 0.05). Scan-rescan and inter-observer intra-class correlation coefficients ranged between 0.62-0.84 and 0.79-0.99 respectively. CONCLUSIONS: Quantitative lower-limb muscle MRI using readily implementable methods was sensitive enough to demonstrate inter-muscle differences (small in health), and correlations with subject age and weight. In combination with high reliability, this strongly supports the suitability of these methods to provide longitudinal outcome measures in neuromuscular disease treatment trials. KEY POINTS: • Quantitative lower limb muscle MRI provides potential outcome measures in neuromuscular diseases • Bilateral thigh/calf coverage using sequences sensitive to acute and chronic pathology • Measurements have excellent scan-rescan and interobserver reliability • Measurements show small but significant inter-subject age and weight dependency • Readily implementable sequences suitable for further assessment in patient studies.


Subject(s)
Body Weight , Image Interpretation, Computer-Assisted , Magnetic Resonance Imaging/methods , Muscle, Skeletal/anatomy & histology , Adult , Age Factors , Aged , Female , Healthy Volunteers , Humans , Lower Extremity , Male , Middle Aged , ROC Curve , Reproducibility of Results , Sex Factors , Young Adult
15.
PLoS One ; 9(2): e90377, 2014.
Article in English | MEDLINE | ID: mdl-24587344

ABSTRACT

We conducted a prospective multinational study of muscle pathology using magnetic resonance imaging (MRI) in patients with limb-girdle muscular dystrophy 2I (LGMD2I). Thirty eight adult ambulant LGMD2I patients (19 male; 19 female) with genetically identical mutations (c.826C>A) in the fukutin-related protein (FKRP) gene were recruited. In each patient, T1-weighted (T1w) imaging was assessed by qualitative grading for 15 individual lower limb muscles and quantitative Dixon imaging was analysed on 14 individual lower limb muscles by region of interest analysis. We described the pattern and appearance of muscle pathology and gender differences, not previously reported for LGMD2I. Diffuse fat infiltration of the gastrocnemii muscles was demonstrated in females, whereas in males fat infiltration was more prominent in the medial than the lateral gastrocnemius (p = 0.05). In the anterior thigh of males, in contrast to females, median fat infiltration in the vastus medialis muscle (45.7%) exceeded that in the vastus lateralis muscle (11.2%) (p<0.005). MRI is non-invasive, objective and does not rely on patient effort compared to clinical and physical measures that are currently employed. We demonstrated (i) that the quantitative Dixon technique is an objective quantitative marker of disease and (ii) new observations of gender specific patterns of muscle involvement in LGMD2I.


Subject(s)
Adipose Tissue, White/pathology , Magnetic Resonance Imaging/methods , Muscle, Skeletal/pathology , Muscular Dystrophies, Limb-Girdle/pathology , Proteins/genetics , Adipose Tissue, White/metabolism , Adolescent , Adult , Cross-Sectional Studies , Europe , Female , Humans , Image Processing, Computer-Assisted , Male , Middle Aged , Muscle, Skeletal/metabolism , Muscular Dystrophies, Limb-Girdle/genetics , Mutation , Pentosyltransferases , Sex Factors
16.
J Magn Reson Imaging ; 39(4): 1033-8, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24123788

ABSTRACT

PURPOSE: To compare the influence of two limb positions and slice prescription using scout-image-based and surface-anatomy-based methods on the reproducibility of quantitative MRI of lower-limb muscles. MATERIALS AND METHODS: Ten healthy subjects were scanned at 3 Tesla with a two-dimensional turbo spin-echo T1-weighted acquisition. Imaging was performed at thigh and calf level in two subject limb positions and independently repeated by a second operator. Regions-of-interest (ROI) were drawn on three muscles at thigh and calf levels on axial slices at fixed distance from the knee joint and at a level determined by surface anatomy. RESULTS: Test-retest reliability of muscle cross-sectional area and ROI area overlap were similar for both limb positioning methods. Changing limb position between scans reduced ROI overlap (P < 0.01). Scout-image-based slice prescription resulted in narrower limits of agreement and higher intraclass correlation coefficients compared with surface-anatomy-based slice prescription. CONCLUSION: Slice prescription based on fixed distance from the knee joint provided superior reproducibility of slice location than a surface anatomy-based method and should be used for longitudinal quantitative MRI studies. Exact subject positioning will depend on scanner and coil configuration, but should be consistent through a longitudinal study.


Subject(s)
Algorithms , Anatomic Landmarks/anatomy & histology , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Muscle, Skeletal/anatomy & histology , Adult , Female , Humans , Lower Extremity , Male , Middle Aged , Reference Values , Reproducibility of Results , Sensitivity and Specificity
17.
PLoS One ; 8(8): e70993, 2013.
Article in English | MEDLINE | ID: mdl-23967145

ABSTRACT

BACKGROUND: Outcome measures for clinical trials in neuromuscular diseases are typically based on physical assessments which are dependent on patient effort, combine the effort of different muscle groups, and may not be sensitive to progression over short trial periods in slow-progressing diseases. We hypothesised that quantitative fat imaging by MRI (Dixon technique) could provide more discriminating quantitative, patient-independent measurements of the progress of muscle fat replacement within individual muscle groups. OBJECTIVE: To determine whether quantitative fat imaging could measure disease progression in a cohort of limb-girdle muscular dystrophy 2I (LGMD2I) patients over a 12 month period. METHODS: 32 adult patients (17 male;15 female) from 4 European tertiary referral centres with the homozygous c.826C>A mutation in the fukutin-related protein gene (FKRP) completed baseline and follow up measurements 12 months later. Quantitative fat imaging was performed and muscle fat fraction change was compared with (i) muscle strength and function assessed using standardized physical tests and (ii) standard T1-weighted MRI graded on a 6 point scale. RESULTS: There was a significant increase in muscle fat fraction in 9 of the 14 muscles analyzed using the quantitative MRI technique from baseline to 12 months follow up. Changes were not seen in the conventional longitudinal physical assessments or in qualitative scoring of the T1w images. CONCLUSIONS: Quantitative muscle MRI, using the Dixon technique, could be used as an important longitudinal outcome measure to assess muscle pathology and monitor therapeutic efficacy in patients with LGMD2I.


Subject(s)
Disease Progression , Magnetic Resonance Imaging , Muscles/pathology , Muscular Dystrophies, Limb-Girdle/diagnosis , Muscular Dystrophies, Limb-Girdle/pathology , Adipose Tissue/metabolism , Adolescent , Adult , Female , Follow-Up Studies , Humans , Image Interpretation, Computer-Assisted , Longitudinal Studies , Male , Middle Aged , Young Adult
18.
Neuromuscul Disord ; 23(8): 637-46, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23810313

ABSTRACT

We assessed the presence, frequency and pattern of MRI abnormalities in non-dystrophic myotonia patients. We reviewed T1-weighted and STIR (short-tau-inversion-recovery) 3T MRI sequences of lower limb muscles at thigh and calf level in 21 patients with genetically confirmed non-dystrophic myotonia: 11 with CLCN1 mutations and 10 with SCN4A mutations, and 19 healthy volunteers. The MRI examinations of all patients showed hyperintensity within muscles on either T1-weighted or STIR images. Mild extensive or marked T1-weighted changes were noted in 10/21 patients and no volunteers. Muscles in the thigh were equally likely to be affected but in the calf there was sparing of tibialis posterior. Oedema was common in calf musculature especially in the medial gastrocnemius with STIR hyperintensity observed in 18/21 patients. In 10/11 CLCN1 patients this included a previously unreported "central stripe", also present in 3/10 SCN4A patients but no volunteers. Degree of fatty infiltration correlated with age (rho=0.46, p<0.05). Muscle MRI is frequently abnormal in non-dystrophic myotonia providing evidence of fatty infiltration and/or oedema. The pattern is distinct from other myotonic disorders; in particular the "central stripe" has not been reported in other conditions. Correlations with clinical parameters suggest a potential role for MRI as a biomarker.


Subject(s)
Muscle, Skeletal/pathology , Myotonic Disorders/genetics , Myotonic Disorders/pathology , Adult , Aged , Chloride Channels/genetics , Female , Humans , Imaging, Three-Dimensional , Linear Models , Magnetic Resonance Imaging , Male , Middle Aged , Mutation/genetics , NAV1.4 Voltage-Gated Sodium Channel/genetics , Young Adult
19.
Radiol Res Pract ; 2013: 809568, 2013.
Article in English | MEDLINE | ID: mdl-23589774

ABSTRACT

High resolution and high field magnetic resonance neurography (MR neurography, MRN) is shown to have excellent anatomic capability. There have been considerable advances in the technology in the last few years leading to various feasibility studies using different structural and functional imaging approaches in both clinical and research settings. This paper is intended to be a useful seminar for readers who want to gain knowledge of the advancements in the MRN pulse sequences currently used in clinical practice as well as learn about the other techniques on the horizon aimed at better depiction of nerve anatomy, pathology, and potential noninvasive evaluation of nerve degeneration or regeneration.

20.
Magn Reson Med ; 66(5): 1293-302, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21604292

ABSTRACT

Muscle damage, edema, and fat infiltration are hallmarks of a range of neuromuscular diseases. The T(2) of water, T(2,w) , in muscle lengthens with both myocellular damage and inflammation and is typically measured using multiple spin-echo or Carr-Purcell-Meiboom-Gill acquisitions. However, microscopic fat infiltration in neuromuscular diseases prevents accurate T(2,w) quantitation as the longer T(2) of fat, T(2,f) , masks underlying changes in the water component. Fat saturation can be inconsistent across the imaging volume and removes valuable physiological fat information. A new method is presented that combines iterative decomposition of water and fat with echo asymmetry and least squares estimation with a Carr-Purcell-Meiboom-Gill-sequence. The sequence results in water and fat separated images at each echo time for use in T(2,w) and T(2,f) quantification. With knowledge of the T(2,w) and T(2,f) , a T(2) -corrected fat fraction map can also be calculated. Monte-Carlo simulations and measurements in phantoms, volunteers, and a patient with inclusion body myositis are demonstrated. In healthy volunteers, uniform T(2,w) and T(2) -corrected fat fraction maps are present within all muscle groups. However, muscle-specific patterns of fat infiltration and edema are evident in inclusion body myositis, which demonstrates the power of separating and quantifying the fat and water components.


Subject(s)
Lipids/analysis , Magnetic Resonance Imaging/methods , Humans , Monte Carlo Method , Neuromuscular Diseases/diagnosis , Phantoms, Imaging , Water/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...