Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 347
Filter
1.
bioRxiv ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38979132

ABSTRACT

Nicotinamide adenine dinucleotide (NAD) is essential for many enzymatic reactions, including those involved in energy metabolism, DNA repair and the activity of sirtuins, a family of defensive deacylases. During aging, levels of NAD + can decrease by up to 50% in some tissues, the repletion of which provides a range of health benefits in both mice and humans. Whether or not the NAD + precursor nicotinamide mononucleotide (NMN) extends lifespan in mammals is not known. Here we investigate the effect of long-term administration of NMN on the health, cancer burden, frailty and lifespan of male and female mice. Without increasing tumor counts or severity in any tissue, NMN treatment of males and females increased activity, maintained more youthful gene expression patterns, and reduced overall frailty. Reduced frailty with NMN treatment was associated with increases in levels of Anerotruncus colihominis, a gut bacterium associated with lower inflammation in mice and increased longevity in humans. NMN slowed the accumulation of adipose tissue later in life and improved metabolic health in male but not female mice, while in females but not males, NMN increased median lifespan by 8.5%, possible due to sex-specific effects of NMN on NAD + metabolism. Together, these data show that chronic NMN treatment delays frailty, alters the microbiome, improves male metabolic health, and increases female mouse lifespan, without increasing cancer burden. These results highlight the potential of NAD + boosters for treating age-related conditions and the importance of using both sexes for interventional lifespan studies.

3.
bioRxiv ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38826452

ABSTRACT

Background: Small artery remodeling and endothelial dysfunction are hallmarks of hypertension. Growing evidence supports a likely causal association between cardiovascular diseases and the presence of endothelial-to-mesenchymal transition (EndMT), a cellular transdifferentiation process in which endothelial cells (ECs) partially lose their identity and acquire additional mesenchymal phenotypes. EC reprogramming represents an innovative strategy in regenerative medicine to prevent deleterious effects induced by cardiovascular diseases. Methods: Using a partial reprogramming of ECs, via overexpression of Oct-3/4, Sox-2, and Klf-4 (OSK) transcription factors, we aimed to bring ECs back to a youthful phenotype in hypertensive mice. Primary ECs were infected with lentiviral vectors (LV) containing the specific EC marker cadherin 5 (Cdh5) and the fluorescent reporter enhanced green fluorescence protein (EGFP) with empty vector (LVCO) or with OSK (LV-OSK). Confocal microscopy and western blotting analysis were used to confirm the OSK overexpression. Cellular migration, senescence, and apoptosis were evaluated. Human aortic ECs (HAoECs) from male and female normotensive and hypertensive patients were analyzed after OSK or control treatments for their endothelial nitric oxide synthase (eNOS) levels, nitric oxide (NO), and genetic profile. Male and female normotensive (BPN/3J) and hypertensive (BPH/2J) mice were treated with an intravenous (i.v.) injection of LVCO or LV-OSK and evaluated 10 days post-infection. The blood pressure, cardiac function, vascular reactivity of small arteries, in vivo EGFP signal and EndMT inhibition were analyzed. Results: OSK overexpression induced partial EC reprogramming in vitro , and these cells showed endothelial progenitor cell (EPC)-like features with lower migratory capability. OSK treatment of hypertensive BPH/2J mice normalized blood pressure and resistance arteries hypercontractility, via the attenuation of EndMT and elastin breaks. EGFP signal was detected in vivo in the prefrontal cortex of both BPN/3J and BPH/2J-treated mice, but OSK induced angiogenesis only in male BPN/3J mice. OSK-treated human ECs from hypertensive patients showed high eNOS activation and NO production, with low ROS formation. Single-cell RNA analysis showed that OSK alleviated EC senescence and EndMT, restoring their phenotypes in human ECs from hypertensive patients. Conclusion: Overall, these data indicate that OSK treatment and EC reprogramming can decrease blood pressure and reverse hypertension-induced vascular damage.

4.
Age Ageing ; 53(3)2024 03 01.
Article in English | MEDLINE | ID: mdl-38497238

ABSTRACT

BACKGROUND: A growing number of older people provide unpaid care, but contemporary research evidence on this group is limited. AIM: This study aims to describe the characteristics of older people who provide unpaid care and how these vary by socioeconomic position. METHODS: Using recent information from the English Longitudinal Study of Ageing (ELSA wave 9, 2019), we analysed cross-sectional data on 1,282 unpaid carers aged ≥50. Data on sociodemographics, health, social wellbeing, care intensity and caregiver-recipient relationships were extracted. Total net non-pension wealth quintiles were used as a relative measure of socioeconomic position. Differences between the poorest and richest wealth quintiles were examined through logistic regression. FINDINGS: Most older carers in ELSA were female and looking after another older person. Poor mental and physical health and social isolation were common, and socially patterned. Compared with carers in the middle wealth group, the poorest group were more likely to be living with the person they cared for (odds ratio (OR) 1.56 [95% confidence interval (CI) 1.03-2.36]) and more likely to experience loneliness (OR 2.29 [95% CI 1.42-3.69]), dependency (i.e. the need for help with activities of daily living) (OR 1.62 [95% CI 1.05-2.51]), chronic pain (OR 1.81 [95% CI 1.23-2.67]), a higher number of diseases (OR 1.75 [95% CI 1.15-2.65]) and fair/poor self-rated health (OR 2.59 [95% CI 1.79-3.76]). The poorest carers were also less likely to have a high quality of life (OR 0.51 [95% CI 0.33-0.80]) or be in work (OR 0.33 [95% CI 0.19-0.59]). CONCLUSION: Our findings suggest that financially disadvantaged unpaid carers (and their households) may have the greatest needs for intervention and support. Focussing resources on this group has potential to address social inequalities.


Subject(s)
Caregivers , Quality of Life , Aged , Female , Humans , Male , Activities of Daily Living , Aging , Cross-Sectional Studies , Longitudinal Studies , Middle Aged
5.
6.
Transl Psychiatry ; 14(1): 115, 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38402197

ABSTRACT

Contextual triggers are significant factors contributing to relapse in substance use disorders (SUD). Emerging evidence points to a critical role of extracellular matrix (ECM) molecules as mediators of reward memories. Chondroitin sulfate proteoglycans (CSPGs) are a subset of ECM molecules that form perineuronal nets (PNN) around inhibitory neurons. PNNs restrict synaptic connections and help maintain synapses. Rodent models suggest that modulation of PNNs may strengthen contextual reward memories in SUD. However, there is currently a lack of information regarding PNNs in the hippocampus of people with SUD as well as how comorbidity with major depressive disorder (MDD) may affect PNNs. We used postmortem hippocampal tissues from cohorts of human and nonhuman primates with or without chronic alcohol use to test the hypothesis that PNNs are increased in subjects with SUD. We used histochemical labeling and quantitative microscopy to examine PNNs, and qRT-PCR to examine gene expression for ECM molecules, synaptic markers and related markers. We identified increased densities of PNNs and CSPG-labeled glial cells in SUD, coinciding with decreased expression of the ECM protease matrix metalloproteinase 9 (Mmp9), and increased expression for the excitatory synaptic marker vesicle associated membrane protein 2 (Vamp2). Similar increases in PNNs were observed in monkeys with chronic alcohol self-administration. Subjects with MDD displayed changes opposite to SUD, and subjects with SUD and comorbid MDD had minimal changes in any of the outcome measures examined. Our findings demonstrate that PNNs are increased in SUD, possibly contributing to stabilizing contextual reward memories as suggested by preclinical studies. Our results also point to a previously unsuspected role for CSPG expression in glial cells in SUD. Evidence for increased hippocampal PNNs in SUD suggests that targeting PNNs to weaken contextual reward memories is a promising therapeutic approach for SUD, however comorbidity with MDD is a significant consideration.


Subject(s)
Depressive Disorder, Major , Substance-Related Disorders , Animals , Humans , Depressive Disorder, Major/metabolism , Extracellular Matrix/metabolism , Neurons/metabolism , Hippocampus
7.
Nat Aging ; 4(2): 261-274, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38200273

ABSTRACT

Epigenetic 'clocks' based on DNA methylation have emerged as the most robust and widely used aging biomarkers, but conventional methods for applying them are expensive and laborious. Here we develop tagmentation-based indexing for methylation sequencing (TIME-seq), a highly multiplexed and scalable method for low-cost epigenetic clocks. Using TIME-seq, we applied multi-tissue and tissue-specific epigenetic clocks in over 1,800 mouse DNA samples from eight tissue and cell types. We show that TIME-seq clocks are accurate and robust, enriched for polycomb repressive complex 2-regulated loci, and benchmark favorably against conventional methods despite being up to 100-fold less expensive. Using dietary treatments and gene therapy, we find that TIME-seq clocks reflect diverse interventions in multiple tissues. Finally, we develop an economical human blood clock (R > 0.96, median error = 3.39 years) in 1,056 demographically representative individuals. These methods will enable more efficient epigenetic clock measurement in larger-scale human and animal studies.


Subject(s)
DNA Methylation , Labor, Obstetric , Pregnancy , Female , Humans , Mice , Animals , DNA Methylation/genetics , Epigenesis, Genetic , Aging/genetics , Epigenomics/methods
9.
Cell Metab ; 36(2): 354-376, 2024 02 06.
Article in English | MEDLINE | ID: mdl-38181790

ABSTRACT

Here, we summarize the current knowledge on eight promising drugs and natural compounds that have been tested in the clinic: metformin, NAD+ precursors, glucagon-like peptide-1 receptor agonists, TORC1 inhibitors, spermidine, senolytics, probiotics, and anti-inflammatories. Multiple clinical trials have commenced to evaluate the efficacy of such agents against age-associated diseases including diabetes, cardiovascular disease, cancer, and neurodegenerative diseases. There are reasonable expectations that drugs able to decelerate or reverse aging processes will also exert broad disease-preventing or -attenuating effects. Hence, the outcome of past, ongoing, and future disease-specific trials may pave the way to the development of new anti-aging medicines. Drugs approved for specific disease indications may subsequently be repurposed for the treatment of organism-wide aging consequences.


Subject(s)
Cardiovascular Diseases , Metformin , Neoplasms , Humans , NAD , Aging , Metformin/pharmacology , Metformin/therapeutic use
10.
medRxiv ; 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37732207

ABSTRACT

Contextual triggers are significant factors contributing to relapse in substance use disorders (SUD). Emerging evidence points to a critical role of extracellular matrix (ECM) molecules as mediators of reward memories. Chondroitin sulfate proteoglycans (CSPGs) are a subset of ECM molecules that form perineuronal nets (PNN) around inhibitory neurons. PNNs restrict synaptic connections and help maintain synapses. Rodent models suggest that modulation of PNNs may strengthen contextual reward memories in SUD. However, there is currently a lack of information regarding PNNs in the hippocampus of people with SUD as well as how comorbidity with major depressive disorder (MDD) may affect PNNs. We used postmortem hippocampal tissues from cohorts of human and nonhuman primates with or without chronic alcohol use to test the hypothesis that PNNs are increased in subjects with SUD. We used histochemical labeling and quantitative microscopy to examine PNNs, and qRT-PCR to examine gene expression for ECM molecules, synaptic markers and related markers. We identified increased densities of PNNs and CSPG-labeled glial cells in SUD, coinciding with decreased expression of the ECM protease matrix metalloproteinase 9 (Mmp9), and increased expression for the excitatory synaptic marker vesicle associated membrane protein 2 (Vamp2). Similar increases in PNNs were observed in monkeys with chronic alcohol self-administration. Subjects with MDD displayed changes opposite to SUD, and subjects with SUD and comorbid MDD had minimal changes in any of the outcome measures examined. Our findings demonstrate that PNNs are increased in SUD, possibly contributing to stabilizing contextual reward memories as suggested by preclinical studies. Our results also point to a previously unsuspected role for CSPG expression in glial cells in SUD. Evidence for increased hippocampal PNNs in SUD suggests that targeting PNNs to weaken contextual reward memories is a promising therapeutic approach for SUD, however comorbidity with MDD is a significant consideration.

11.
J Neuroophthalmol ; 44(1): 16-21, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37938114

ABSTRACT

BACKGROUND: In 2005, we reported 3 patients with bilateral optic nerve damage early in life. These patients had stable vision for decades but then experienced significant bilateral vision loss with no obvious cause. Our hypothesis, novel at that time, was that the late decline of vision was due to age-related attrition of retinal ganglion cells superimposed on a reduced neuronal population due to the earlier injury. EVIDENCE ACQUISITION: The field of epigenetics provides a new paradigm with which to consider the normal aging process and the impact of neuronal injury, which has been shown to accelerate aging. Late-in-life decline in function after early neuronal injury occurs in multiple sclerosis due to dysregulated inflammation and postpolio syndrome. Recent studies by our group in mice have also demonstrated the possibility of partial reversal of cellular aging and the potential to mitigate anatomical damage after injury and even improve visual function. RESULTS: The results in mice and nonhuman primates published elsewhere have shown enhanced neuronal survival and visual function after partial epigenetic reprogramming. CONCLUSIONS: Injury promotes epigenetic aging , and this finding can be observed in several clinically relevant scenarios. An understanding of the epigenetic mechanisms at play opens the opportunity to restore function in the nervous system and elsewhere with cellular rejuvenation therapies. Our earlier cases exemplify how reconsideration of previously established concepts can motivate inquiry of new paradigms.


Subject(s)
Multiple Sclerosis , Optic Nerve Diseases , Humans , Mice , Animals , Optic Nerve Diseases/genetics , Optic Nerve , Retinal Ganglion Cells , Aging/genetics , Vision Disorders/genetics , Blindness
12.
Nat Aging ; 4(1): 14-26, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38102454

ABSTRACT

Over the past decade, there has been a dramatic increase in efforts to ameliorate aging and the diseases it causes, with transient expression of nuclear reprogramming factors recently emerging as an intriguing approach. Expression of these factors, either systemically or in a tissue-specific manner, has been shown to combat age-related deterioration in mouse and human model systems at the cellular, tissue and organismal level. Here we discuss the current state of epigenetic rejuvenation strategies via partial reprogramming in both mouse and human models. For each classical reprogramming factor, we provide a brief description of its contribution to reprogramming and discuss additional factors or chemical strategies. We discuss what is known regarding chromatin remodeling and the molecular dynamics underlying rejuvenation, and, finally, we consider strategies to improve the practical uses of epigenetic reprogramming to treat aging and age-related diseases, focusing on the open questions and remaining challenges in this emerging field.


Subject(s)
Induced Pluripotent Stem Cells , Rejuvenation , Humans , Animals , Mice , Aging/genetics , Cellular Reprogramming/genetics , Epigenesis, Genetic
13.
Cell Reprogram ; 25(6): 288-299, 2023 12.
Article in English | MEDLINE | ID: mdl-38060815

ABSTRACT

Glaucoma, a chronic neurodegenerative disease, is a leading cause of age-related blindness worldwide and characterized by the progressive loss of retinal ganglion cells (RGCs) and their axons. Previously, we developed a novel epigenetic rejuvenation therapy, based on the expression of the three transcription factors Oct4, Sox2, and Klf4 (OSK), which safely rejuvenates RGCs without altering cell identity in glaucomatous and old mice after 1 month of treatment. In the current year-long study, mice with continuous or cyclic OSK expression induced after glaucoma-induced vision damage had occurred were tracked for efficacy, duration, and safety. Surprisingly, only 2 months of OSK fully restored impaired vision, with a restoration of vision for 11 months with prolonged expression. In RGCs, transcription from the doxycycline (DOX)-inducible Tet-On AAV system, returned to baseline 4 weeks after DOX withdrawal. Significant vision improvements remained for 1 month post switching off OSK, after which the vision benefit gradually diminished but remained better than baseline. Notably, no adverse effects on retinal structure or body weight were observed in glaucomatous mice with OSK continuously expressed for 21 months providing compelling evidence of efficacy and safety. This work highlights the tremendous therapeutic potential of rejuvenating gene therapies using OSK, not only for glaucoma but also for other ocular and systemic injuries and age-related diseases.


Subject(s)
Glaucoma , Neurodegenerative Diseases , Mice , Animals , Intraocular Pressure , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/therapy , Glaucoma/therapy , Glaucoma/drug therapy , Retina/metabolism , Genetic Therapy , Disease Models, Animal
14.
Nat Aging ; 3(12): 1486-1499, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38102202

ABSTRACT

Information storage and retrieval is essential for all life. In biology, information is primarily stored in two distinct ways: the genome, comprising nucleic acids, acts as a foundational blueprint and the epigenome, consisting of chemical modifications to DNA and histone proteins, regulates gene expression patterns and endows cells with specific identities and functions. Unlike the stable, digital nature of genetic information, epigenetic information is stored in a digital-analog format, susceptible to alterations induced by diverse environmental signals and cellular damage. The Information Theory of Aging (ITOA) states that the aging process is driven by the progressive loss of youthful epigenetic information, the retrieval of which via epigenetic reprogramming can improve the function of damaged and aged tissues by catalyzing age reversal.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Information Theory , Histones/genetics
15.
Aging Cell ; 22(12): e14027, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38009412

ABSTRACT

The NAD+ -dependent deacylase family of sirtuin enzymes have been implicated in biological ageing, late-life health and overall lifespan, though of these members, a role for sirtuin-2 (SIRT2) is less clear. Transgenic overexpression of SIRT2 in the BubR1 hypomorph model of progeria can rescue many aspects of health and increase overall lifespan, due to a specific interaction between SIRT2 and BubR1 that improves the stability of this protein. It is less clear whether SIRT2 is relevant to biological ageing outside of a model where BubR1 is under-expressed. Here, we sought to test whether SIRT2 over-expression would impact the overall health and lifespan of mice on a nonprogeroid, wild-type background. While we previously found that SIRT2 transgenic overexpression prolonged female fertility, here, we did not observe any additional impact on health or lifespan, which was measured in both male and female mice on standard chow diets, and in males challenged with a high-fat diet. At the biochemical level, NMR studies revealed an increase in total levels of a number of metabolites in the brain of SIRT2-Tg animals, pointing to a potential impact in cell composition; however, this did not translate into functional differences. Overall, we conclude that strategies to enhance SIRT2 protein levels may not lead to increased longevity.


Subject(s)
Longevity , Sirtuin 2 , Animals , Female , Male , Mice , Aging/genetics , Animals, Genetically Modified/metabolism , Brain/metabolism , Longevity/genetics , Sirtuin 2/genetics , Sirtuin 2/metabolism
16.
bioRxiv ; 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37873446

ABSTRACT

In multiple sclerosis (MS), the invasion of the central nervous system by peripheral immune cells is followed by the activation of resident microglia and astrocytes. This cascade of events results in demyelination, which triggers neuronal damage and death. The molecular signals in neurons responsible for this damage are not yet fully characterized. In MS, retinal ganglion cell neurons (RGCs) of the central nervous system (CNS) undergo axonal injury and cell death. This phenomenon is mirrored in the experimental autoimmune encephalomyelitis (EAE) mouse model of MS. To understand the molecular landscape, we isolated RGCs from mice subjected to the EAE protocol. RNA-sequencing and ATAC-sequencing analyses were performed. Pathway analysis of the RNA-sequencing data revealed that RGCs displayed a molecular signature, similar to aged neurons, showcasing features of senescence. Single-nucleus RNA-sequencing analysis of neurons from human MS patients revealed a comparable senescence-like phenotype., which was supported by immunostaining RGCs in EAE mice. These changes include alterations to the nuclear envelope, modifications in chromatin marks, and accumulation of DNA damage. Transduction of RGCs with an Oct4 - Sox2 - Klf4 transgene to convert neurons in the EAE model to a more youthful epigenetic and transcriptomic state enhanced the survival of RGCs. Collectively, this research uncovers a previously unidentified senescent-like phenotype in neurons under pathological inflammation and neurons from MS patients. The rejuvenation of this aged transcriptome improved visual acuity and neuronal survival in the EAE model supporting the idea that age rejuvenation therapies and senotherapeutic agents could offer a direct means of neuroprotection in autoimmune disorders.

17.
Cell Metab ; 35(10): 1673-1674, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37793341

ABSTRACT

Alzheimer's disease is often accompanied by disruptions in circadian rhythms, which may exacerbate the disease's progression. In this issue, Whittaker and colleagues demonstrate that the modulation of circadian rhythms by time-restricted feeding can alter the disease trajectory in Alzheimer's mouse models.


Subject(s)
Alzheimer Disease , Circadian Rhythm , Animals , Mice , Disease Models, Animal , Meals
18.
Br J Clin Pharmacol ; 89(10): 3217-3227, 2023 10.
Article in English | MEDLINE | ID: mdl-37480194

ABSTRACT

It is unclear whether polypharmacy is associated with difficulty taking medications amongst people aged ≥85 living at home. This is despite the projected decline in availability of family carers, who may support independent living. Using Newcastle 85+ Study data and mixed-effects modelling, we investigated the association between polypharmacy and difficulty taking medications amongst 85-year-olds living at home, over a 10-year time period. Polypharmacy was not associated with difficulty taking medications as either a continuous (OR = 0.99 [0.91-1.08]) or categorical variable (5-9 medications, OR = 0.69 [0.34-1.41]; ≥10 medications, OR = 0.85 [0.34-2.07]). The significant predictors included disability, visual impairment and cognitive impairment. Our results suggest that people aged ≥85 living at home with disability, visual impairment and/or cognitive impairment will have difficulty taking their medications, regardless of how many they are prescribed. Therefore, healthcare professionals should routinely ask about, assess and address problems that these patient groups may have with taking their medicines, independent of the number of drugs taken.


Subject(s)
Cognitive Dysfunction , Independent Living , Humans , Polypharmacy , Health Personnel , Vision Disorders
19.
Aging (Albany NY) ; 15(13): 5966-5989, 2023 07 12.
Article in English | MEDLINE | ID: mdl-37437248

ABSTRACT

A hallmark of eukaryotic aging is a loss of epigenetic information, a process that can be reversed. We have previously shown that the ectopic induction of the Yamanaka factors OCT4, SOX2, and KLF4 (OSK) in mammals can restore youthful DNA methylation patterns, transcript profiles, and tissue function, without erasing cellular identity, a process that requires active DNA demethylation. To screen for molecules that reverse cellular aging and rejuvenate human cells without altering the genome, we developed high-throughput cell-based assays that distinguish young from old and senescent cells, including transcription-based aging clocks and a real-time nucleocytoplasmic compartmentalization (NCC) assay. We identify six chemical cocktails, which, in less than a week and without compromising cellular identity, restore a youthful genome-wide transcript profile and reverse transcriptomic age. Thus, rejuvenation by age reversal can be achieved, not only by genetic, but also chemical means.


Subject(s)
Cellular Reprogramming , Induced Pluripotent Stem Cells , Animals , Humans , Cellular Reprogramming/genetics , Cellular Senescence/genetics , Aging/genetics , DNA Methylation , Mammals
20.
FEBS Lett ; 597(17): 2196-2220, 2023 09.
Article in English | MEDLINE | ID: mdl-37463842

ABSTRACT

The nicotinamide adenine dinucleotide (NAD+ ) precursor nicotinamide mononucleotide (NMN) is a proposed therapy for age-related disease, whereby it is assumed that NMN is incorporated into NAD+ through the canonical recycling pathway. During oral delivery, NMN is exposed to the gut microbiome, which could modify the NAD+ metabolome through enzyme activities not present in the mammalian host. We show that orally delivered NMN can undergo deamidation and incorporation in mammalian tissue via the de novo pathway, which is reduced in animals treated with antibiotics to ablate the gut microbiome. Antibiotics increased the availability of NAD+ metabolites, suggesting the microbiome could be in competition with the host for dietary NAD+ precursors. These findings highlight new interactions between NMN and the gut microbiome.


Subject(s)
Microbiota , Nicotinamide Mononucleotide , Animals , Nicotinamide Mononucleotide/metabolism , NAD/metabolism , Anti-Bacterial Agents , Mammals/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...