Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Wellcome Open Res ; 8: 366, 2023.
Article in English | MEDLINE | ID: mdl-37928208

ABSTRACT

Background: The University of Southampton, in collaboration with the University Hospital Southampton (UHS) NHS Foundation Trust and industrial partners, has been at the forefront of developing three-dimensional (3D) imaging workflows using X-ray microfocus computed tomography (µCT) -based technology. This article presents the outcomes of these endeavours and highlights the distinctive characteristics of a µCT facility tailored explicitly for 3D X-ray Histology, with a primary focus on applications in biomedical research and preclinical and clinical studies. Methods: The UHS houses a unique 3D X-ray Histology (XRH) facility, offering a range of services to national and international clients. The facility employs specialised µCT equipment explicitly designed for histology applications, allowing whole-block XRH imaging of formalin-fixed and paraffin-embedded tissue specimens. It also enables correlative imaging by combining µCT imaging with other microscopy techniques, such as immunohistochemistry (IHC) and serial block-face scanning electron microscopy, as well as data visualisation, image quantification, and bespoke analysis. Results: Over the past seven years, the XRH facility has successfully completed over 120 projects in collaboration with researchers from 60 affiliations, resulting in numerous published manuscripts and conference proceedings. The facility has streamlined the µCT imaging process, improving productivity and enabling efficient acquisition of 3D datasets. Discussion & Conclusions: The 3D X-ray Histology (XRH) facility at UHS is a pioneering platform in the field of histology and biomedical imaging. To the best of our knowledge, it stands out as the world's first dedicated XRH facility, encompassing every aspect of the imaging process, from user support to data generation, analysis, training, archiving, and metadata generation. This article serves as a comprehensive guide for establishing similar XRH facilities, covering key aspects of facility setup and operation. Researchers and institutions interested in developing state-of-the-art histology and imaging facilities can utilise this resource to explore new frontiers in their research and discoveries.

2.
RSC Med Chem ; 13(9): 1052-1057, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36324499

ABSTRACT

Fragment based drug discovery is a critical part of the lead generation toolbox and relies heavily on a readily available, high quality fragment library. Over years of use, the AstraZeneca fragment set had become partially depleted and instances of compound deterioration had been found. It was recognised that a redevelopment was required. This provided an opportunity to evolve our screening sets strategy, whilst ensuring that the quality of the fragment set met the robust requirements of fragment screening campaigns. In this communication we share the strategy employed, in particular highlighting two aspects of our approach that we believe others in the community would benefit from, namely that; (i) fragments were selected with input from Medicinal Chemists at an early stage, and (ii) the library was arranged in a layered format to ensure maximum flexibility on a per target basis.

3.
SLAS Discov ; 27(6): 369-374, 2022 09.
Article in English | MEDLINE | ID: mdl-35753605

ABSTRACT

Rapid triage of compounds acting via undesired mechanisms is a crucial stage in a high-throughput screening (HTS) cascade to ensure time and resource is efficiently assigned to the most propitious hits. Redox cycling compounds (RCCs) produce reactive oxygen species, such as hydrogen peroxide, which can impair protein function and appear as hits against liable targets. Direct measurement of tris(2-carboxyethyl)phosphine (TCEP) oxidation has been demonstrated as a sensitive and accurate measure of redox cycling [1]. However, the current nuclear magnetic resonance (NMR) based detection method is not compatible with the throughput required for triage of a HTS campaign. Here we employ Acoustic Mist Ionisation Mass Spectrometry (AMI-MS) [2] to rapidly measure oxidation of TCEP and accurately identify redox cyclers in a high throughput manner.


Subject(s)
Acoustics , High-Throughput Screening Assays , Mass Spectrometry/methods , Oxidation-Reduction
4.
SLAS Discov ; 27(5): 323-329, 2022 07.
Article in English | MEDLINE | ID: mdl-35311668

ABSTRACT

Large compound libraries utilised for HTS often include metal contaminated compounds which can interfere with assay signal or target biology, and therefore appear as hits. Pursuit of these compounds can divert considerable time and resource away from more propitious hits, yet there is currently no established method of detecting metal impurities in a rapid and effective manner. Here we describe the development and application of a high-throughput method to identify metal contaminants using acoustic mist ionisation mass spectrometry (AMI-MS). Although metals species by themselves are not detectable by AMI-MS, we have identified two compounds that chelate metal ions and enable their detection. 6-(diethylamino)-1,3,5-triazine-2,4(1H,3H)-dithione (DMT) and 1-(3-{[4-(4-cyanophenyl)-1-piperidinyl]carbonyl}-4-methylphenyl)-3-ethylthiourea (TU) can form complexes with a range of metal ions. Using a collection of metal catalysts, we have developed two metal chelator assays that collectively allow for the detection of Ag, Au, Co, Cu, Fe, Pd, Pt and Zn. We employed these assays to profile the hit outputs of a Zn liable target, and a Pd liable target, and identified significant quantities of metal contaminated compounds in the HTS outputs. This work provides a method of rapidly identifying metal impurities in hit compounds and has become part of an established workflow in triaging HTS outputs at AstraZeneca, facilitating faster identification of robust lead series.


Subject(s)
Biological Assay , High-Throughput Screening Assays , Biological Assay/methods , High-Throughput Screening Assays/methods , Mass Spectrometry
5.
Rep Prog Phys ; 85(1)2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35138267

ABSTRACT

Advanced manufacturing technologies, led by additive manufacturing, have undergone significant growth in recent years. These technologies enable engineers to design parts with reduced weight while maintaining structural and functional integrity. In particular, metal additive manufacturing parts are increasingly used in application areas such as aerospace, where a failure of a mission-critical part can have dire safety consequences. Therefore, the quality of these components is extremely important. A critical aspect of quality control is dimensional evaluation, where measurements provide quantitative results that are traceable to the standard unit of length, the metre. Dimensional measurements allow designers, manufacturers and users to check product conformity against engineering drawings and enable the same quality standard to be used across the supply chain nationally and internationally. However, there is a lack of development of measurement techniques that provide non-destructive dimensional measurements beyond common non-destructive evaluation focused on defect detection. X-ray computed tomography (XCT) technology has great potential to be used as a non-destructive dimensional evaluation technology. However, technology development is behind the demand and growth for advanced manufactured parts. Both the size and the value of advanced manufactured parts have grown significantly in recent years, leading to new requirements of dimensional measurement technologies. This paper is a cross-disciplinary review of state-of-the-art non-destructive dimensional measuring techniques relevant to advanced manufacturing of metallic parts at larger length scales, especially the use of high energy XCT with source energy of greater than 400 kV to address the need in measuring large advanced manufactured parts. Technologies considered as potential high energy x-ray generators include both conventional x-ray tubes, linear accelerators, and alternative technologies such as inverse Compton scattering sources, synchrotron sources and laser-driven plasma sources. Their technology advances and challenges are elaborated on. The paper also outlines the development of XCT for dimensional metrology and future needs.

6.
Methods Mol Biol ; 2263: 217-230, 2021.
Article in English | MEDLINE | ID: mdl-33877600

ABSTRACT

It is clear from the analysis of the distribution of approved drug targets that enzymes continue to be a major target class for the pharmaceutical industry. The application of high-throughput screens designed to monitor the activity of these enzyme targets, and the ability of test compounds to modulate this activity, is still the predominant hit finding approach in the industry. The widespread use of enzyme activity-based screens has led to the development of several useful guidelines for the development and validation of robust and reliable assays. Key learnings for the development, validation, and implementation of acoustic mist ionization mass spectrometry for high-throughput enzyme assays are described.


Subject(s)
Enzyme Assays/instrumentation , High-Throughput Screening Assays/instrumentation , Mass Spectrometry
7.
Analyst ; 146(1): 315-321, 2021 Jan 04.
Article in English | MEDLINE | ID: mdl-33147300

ABSTRACT

Cellular metabolites and phospholipids contain a vast amount of information about the current state of a cell, and are a useful resource for understanding the effects of drug candidates in vitro. Typical human cell-based assays in early drug discovery rely on simple readouts such as cell viability, or focus on single end-points revealed by an antibody or other label-based technologies. We introduce a generic 384-well plate-based workflow for data-rich cellular assays using facile sample preparation and direct analysis by acoustic mist ionization mass spectrometry (AMI-MS). The assays are compatible with adherent and suspension cells, and provide simultaneous information about a number of cellular small-molecule components (e.g., amino acids, nucleotides, phospholipids), cellular processes (e.g., proliferation, glycolysis, oxidative stress), as well as compound uptake and metabolism. Thanks to the high-throughput and low cost of analysis, the workflow can be introduced very early into any drug discovery pipeline to help select optimal lead molecules.


Subject(s)
Drug Discovery , High-Throughput Screening Assays , Acoustics , Biological Assay , Humans , Mass Spectrometry
8.
Am J Pathol ; 189(8): 1608-1620, 2019 08.
Article in English | MEDLINE | ID: mdl-31125553

ABSTRACT

Historically, micro-computed tomography (µCT) has been considered unsuitable for histologic analysis of unstained formalin-fixed, paraffin-embedded soft tissue biopsy specimens because of a lack of image contrast between the tissue and the paraffin. However, we recently demonstrated that µCT can successfully resolve microstructural detail in routinely prepared tissue specimens. Herein, we illustrate how µCT imaging of standard formalin-fixed, paraffin-embedded biopsy specimens can be seamlessly integrated into conventional histology workflows, enabling nondestructive three-dimensional (3D) X-ray histology, the use and benefits of which we showcase for the exemplar of human lung biopsy specimens. This technology advancement was achieved through manufacturing a first-of-kind µCT scanner for X-ray histology and developing optimized imaging protocols, which do not require any additional sample preparation. 3D X-ray histology allows for nondestructive 3D imaging of tissue microstructure, resolving structural connectivity and heterogeneity of complex tissue networks, such as the vascular network or the respiratory tract. We also demonstrate that 3D X-ray histology can yield consistent and reproducible image quality, enabling quantitative assessment of a tissue's 3D microstructures, which is inaccessible to conventional two-dimensional histology. Being nondestructive, the technique does not interfere with histology workflows, permitting subsequent tissue characterization by means of conventional light microscopy-based histology, immunohistochemistry, and immunofluorescence. 3D X-ray histology can be readily applied to a plethora of archival materials, yielding unprecedented opportunities in diagnosis and research of disease.


Subject(s)
Imaging, Three-Dimensional , Lung Diseases/diagnostic imaging , Lung/diagnostic imaging , X-Ray Microtomography , Humans
9.
Expert Opin Drug Discov ; 14(7): 609-617, 2019 07.
Article in English | MEDLINE | ID: mdl-31081699

ABSTRACT

Introduction: The expansion of label free mass spectrometry into early drug discovery was always predicted to provide improvements in data quality and depth with the potential to reduce costs but has previously been limited by throughput. There are several techniques that vary by sample introduction technology or ionization technique that try to address the challenges in this area. Areas covered: In this review, the authors describe the deployment of such a device, combining acoustic mist ionization and time-of-flight mass spectrometry. The potential impact of this instrument is discussed with case studies reporting screening across a series of enzyme target classes and chemical triage assays which have generated early chemical equity for drug projects. Expert opinion: In our expert opinion, we look forward to the large-scale adoption of mass spectrometry as a high throughput screening approach. The expansion of applications enabled by these technologies such as triage assays and metabolic profiling will also be explored.


Subject(s)
Drug Discovery/methods , Mass Spectrometry/methods , Acoustics , High-Throughput Screening Assays , Humans
10.
Anal Chem ; 91(6): 3790-3794, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30835099

ABSTRACT

Mass spectrometry (MS) has many advantages as a quantitative detection technology for applications within drug discovery. However, current methods of liquid sample introduction to a detector are slow and limit the use of mass spectrometry for kinetic and high-throughput applications. We present the development of an acoustic mist ionization (AMI) interface capable of contactless nanoliter-scale "infusion" of up to three individual samples per second into the mass detector. Installing simple plate handling automation allowed us to reach a throughput of 100 000 samples per day on a single mass spectrometer. We applied AMI-MS to identify inhibitors of a human histone deacetylase from AstraZeneca's collection of 2 million small molecules and measured their half-maximal inhibitory concentration. The speed, sensitivity, simplicity, robustness, and consumption of nanoliter volumes of sample suggest that this technology will have a major impact across many areas of basic and applied research.


Subject(s)
Acoustics , Histone Deacetylase Inhibitors/analysis , Mass Spectrometry/instrumentation , Histone Deacetylase Inhibitors/chemistry , Humans
11.
Lancet Respir Med ; 6(8): 591-602, 2018 08.
Article in English | MEDLINE | ID: mdl-30072106

ABSTRACT

BACKGROUND: The concept that small conducting airways less than 2 mm in diameter become the major site of airflow obstruction in chronic obstructive pulmonary disease (COPD) is well established in the scientific literature, and the last generation of small conducting airways, terminal bronchioles, are known to be destroyed in patients with very severe COPD. We aimed to determine whether destruction of the terminal and transitional bronchioles (the first generation of respiratory airways) occurs before, or in parallel with, emphysematous tissue destruction. METHODS: In this cross-sectional analysis, we applied a novel multiresolution CT imaging protocol to tissue samples obtained using a systematic uniform sampling method to obtain representative unbiased samples of the whole lung or lobe of smokers with normal lung function (controls) and patients with mild COPD (Global Initiative for Chronic Obstructive Lung Disease [GOLD] stage 1), moderate COPD (GOLD 2), or very severe COPD (GOLD 4). Patients with GOLD 1 or GOLD 2 COPD and smokers with normal lung function had undergone lobectomy and pneumonectomy, and patients with GOLD 4 COPD had undergone lung transplantation. Lung tissue samples were used for stereological assessment of the number and morphology of terminal and transitional bronchioles, airspace size (mean linear intercept), and alveolar surface area. FINDINGS: Of the 34 patients included in this study, ten were controls (smokers with normal lung function), ten patients had GOLD 1 COPD, eight had GOLD 2 COPD, and six had GOLD 4 COPD with centrilobular emphysema. The 34 lung specimens provided 262 lung samples. Compared with control smokers, the number of terminal bronchioles decreased by 40% in patients with GOLD 1 COPD (p=0·014) and 43% in patients with GOLD 2 COPD (p=0·036), the number of transitional bronchioles decreased by 56% in patients with GOLD 1 COPD (p=0·0001) and 59% in patients with GOLD 2 COPD (p=0·0001), and alveolar surface area decreased by 33% in patients with GOLD 1 COPD (p=0·019) and 45% in patients with GOLD 2 COPD (p=0·0021). These pathological changes were found to correlate with lung function decline. We also showed significant loss of terminal and transitional bronchioles in lung samples from patients with GOLD 1 or GOLD 2 COPD that had a normal alveolar surface area. Remaining small airways were found to have thickened walls and narrowed lumens, which become more obstructed with increasing COPD GOLD stage. INTERPRETATION: These data show that small airways disease is a pathological feature in mild and moderate COPD. Importantly, this study emphasises that early intervention for disease modification might be required by patients with mild or moderate COPD. FUNDING: Canadian Institutes of Health Research.


Subject(s)
Bronchioles/physiopathology , Pulmonary Disease, Chronic Obstructive/physiopathology , Severity of Illness Index , Aged , Analysis of Variance , Bronchioles/diagnostic imaging , Case-Control Studies , Cross-Sectional Studies , Female , Humans , Lung Volume Measurements , Male , Middle Aged , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Smokers/statistics & numerical data , Tomography, X-Ray Computed
12.
New Phytol ; 216(1): 124-135, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28758681

ABSTRACT

In this paper, we provide direct evidence of the importance of root hairs on pore structure development at the root-soil interface during the early stage of crop establishment. This was achieved by use of high-resolution (c. 5 µm) synchrotron radiation computed tomography (SRCT) to visualise both the structure of root hairs and the soil pore structure in plant-soil microcosms. Two contrasting genotypes of barley (Hordeum vulgare), with and without root hairs, were grown for 8 d in microcosms packed with sandy loam soil at 1.2 g cm-3 dry bulk density. Root hairs were visualised within air-filled pore spaces, but not in the fine-textured soil regions. We found that the genotype with root hairs significantly altered the porosity and connectivity of the detectable pore space (> 5 µm) in the rhizosphere, as compared with the no-hair mutants. Both genotypes showed decreasing pore space between 0.8 and 0.1 mm from the root surface. Interestingly the root-hair-bearing genotype had a significantly greater soil pore volume-fraction at the root-soil interface. Effects of pore structure on diffusion and permeability were estimated to be functionally insignificant under saturated conditions when simulated using image-based modelling.


Subject(s)
Hordeum/physiology , Imaging, Three-Dimensional , Plant Roots/physiology , Rhizosphere , Soil/chemistry , Synchrotrons , Computer Simulation , Porosity
13.
Microsc Microanal ; 23(3): 538-552, 2017 06.
Article in English | MEDLINE | ID: mdl-28320487

ABSTRACT

The use of in vivo X-ray microcomputed tomography (µCT) to study plant root systems has become routine, but is often hampered by poor contrast between roots, soil, soil water, and soil organic matter. In clinical radiology, imaging of poorly contrasting regions is frequently aided by the use of radio-opaque contrast media. In this study, we present evidence for the utility of iodinated contrast media (ICM) in the study of plant root systems using µCT. Different dilutions of an ionic and nonionic ICM (Gastrografin 370 and Niopam 300) were perfused into the aerial vasculature of juvenile pea plants via a leaf flap (Pisum sativum). The root systems were imaged via µCT, and a variety of image-processing approaches used to quantify and compare the magnitude of the contrast enhancement between different regions. Though the treatment did not appear to significantly aid extraction of full root system architectures from the surrounding soil, it did allow the xylem and phloem units of seminal roots and the vascular morphology within rhizobial nodules to be clearly visualized. The nonionic, low-osmolality contrast agent Niopam appeared to be well tolerated by the plant, whereas Gastrografin showed evidence of toxicity. In summary, the use of iodine-based contrast media allows usually poorly contrasting root structures to be visualized nondestructively using X-ray µCT. In particular, the vascular structures of roots and rhizobial nodules can be clearly visualized in situ.

15.
J Med Chem ; 59(24): 11120-11137, 2016 12 22.
Article in English | MEDLINE | ID: mdl-28002956

ABSTRACT

A collaborative high throughput screen of 1.35 million compounds against mutant (R132H) isocitrate dehydrogenase IDH1 led to the identification of a novel series of inhibitors. Elucidation of the bound ligand crystal structure showed that the inhibitors exhibited a novel binding mode in a previously identified allosteric site of IDH1 (R132H). This information guided the optimization of the series yielding submicromolar enzyme inhibitors with promising cellular activity. Encouragingly, one compound from this series was found to induce myeloid differentiation in primary human IDH1 R132H AML cells in vitro.


Subject(s)
Drug Discovery , Enzyme Inhibitors/pharmacology , Isocitrate Dehydrogenase/antagonists & inhibitors , Leukemia, Myeloid, Acute/enzymology , Allosteric Regulation/drug effects , Cell Differentiation/drug effects , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Humans , Isocitrate Dehydrogenase/isolation & purification , Isocitrate Dehydrogenase/metabolism , Leukemia, Myeloid, Acute/pathology , Models, Molecular , Molecular Structure , Structure-Activity Relationship , Tumor Cells, Cultured
16.
JCI Insight ; 1(5)2016 Apr 21.
Article in English | MEDLINE | ID: mdl-27275013

ABSTRACT

In idiopathic pulmonary fibrosis (IPF), the fibroblast focus is a key histological feature representing active fibroproliferation. On standard 2D pathologic examination, fibroblast foci are considered small, distinct lesions, although they have been proposed to form a highly interconnected reticulum as the leading edge of a "wave" of fibrosis. Here, we characterized fibroblast focus morphology and interrelationships in 3D using an integrated micro-CT and histological methodology. In 3D, fibroblast foci were morphologically complex structures, with large variations in shape and volume (range, 1.3 × 104 to 9.9 × 107 µm3). Within each tissue sample numerous multiform foci were present, ranging from a minimum of 0.9 per mm3 of lung tissue to a maximum of 11.1 per mm3 of lung tissue. Each focus was an independent structure, and no interconnections were observed. Together, our data indicate that in 3D fibroblast foci form a constellation of heterogeneous structures with large variations in shape and volume, suggesting previously unrecognized plasticity. No evidence of interconnectivity was identified, consistent with the concept that foci represent discrete sites of lung injury and repair.

17.
J Xray Sci Technol ; 24(5): 691-707, 2016 10 06.
Article in English | MEDLINE | ID: mdl-27341626

ABSTRACT

X-ray computed tomography is an established volume imaging technique used routinely in medical diagnosis, industrial non-destructive testing, and a wide range of scientific fields. Traditionally, computed tomography uses scanning geometries with a single axis of rotation together with reconstruction algorithms specifically designed for this setup. Recently there has however been increasing interest in more complex scanning geometries. These include so called X-ray computed laminography systems capable of imaging specimens with large lateral dimensions or large aspect ratios, neither of which are well suited to conventional CT scanning procedures. Developments throughout this field have thus been rapid, including the introduction of novel system trajectories, the application and refinement of various reconstruction methods, and the use of recently developed computational hardware and software techniques to accelerate reconstruction times. Here we examine the advances made in the last several years and consider their impact on the state of the art.


Subject(s)
Cone-Beam Computed Tomography , Algorithms , Animals , Cone-Beam Computed Tomography/methods , Cone-Beam Computed Tomography/trends , Humans , Image Processing, Computer-Assisted , Phantoms, Imaging
18.
J Lab Autom ; 21(1): 19-26, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26721821

ABSTRACT

High-throughput, direct measurement of substrate-to-product conversion by label-free detection, without the need for engineered substrates or secondary assays, could be considered the "holy grail" of drug discovery screening. Mass spectrometry (MS) has the potential to be part of this ultimate screening solution, but is constrained by the limitations of existing MS sample introduction modes that cannot meet the throughput requirements of high-throughput screening (HTS). Here we report data from a prototype system (Echo-MS) that uses acoustic droplet ejection (ADE) to transfer femtoliter-scale droplets in a rapid, precise, and accurate fashion directly into the MS. The acoustic source can load samples into the MS from a microtiter plate at a rate of up to three samples per second. The resulting MS signal displays a very sharp attack profile and ions are detected within 50 ms of activation of the acoustic transducer. Additionally, we show that the system is capable of generating multiply charged ion species from simple peptides and large proteins. The combination of high speed and low sample volume has significant potential within not only drug discovery, but also other areas of the industry.


Subject(s)
Automation, Laboratory/methods , Biomedical Technology/methods , High-Throughput Screening Assays/methods , Mass Spectrometry/methods , Acoustics , Automation, Laboratory/instrumentation , Biomedical Technology/instrumentation , Solutions , Time Factors
19.
Eur Child Adolesc Psychiatry ; 25(8): 843-52, 2016 Aug.
Article in English | MEDLINE | ID: mdl-26662809

ABSTRACT

Multi-dimensional Treatment Foster Care (MTFC), recently renamed Treatment Foster Care Oregon for Adolescents (TFCO-A) is an internationally recognised intervention for troubled young people in public care. This paper seeks to explain conflicting results with MTFC by testing the hypotheses that it benefits antisocial young people more than others and does so through its effects on their behaviour. Hard-to-manage young people in English foster or residential homes were assessed at entry to a randomised and case-controlled trial of MTFC (n = 88) and usual care (TAU) (n = 83). Primary outcome was the Children's Global Assessment Scale (CGAS) at 12 months analysed according to high (n = 112) or low (n = 59) baseline level of antisocial behaviour on the Health of the Nation Outcome Scales for Children and Adolescents. After adjusting for covariates, there was no overall treatment effect on CGAS. However, the High Antisocial Group receiving MTFC gained more on the CGAS than the Low group (mean improvement 9.36 points vs. 5.33 points). This difference remained significant (p < 0.05) after adjusting for propensity and covariates and was statistically explained by the reduced antisocial behaviour ratings in MTFC. These analyses support the use of MTFC for youth in public care but only for those with higher levels of antisocial behaviour. Further work is needed on whether such benefits persist, and on possible negative effects of this treatment for those with low antisocial behaviour.Trial Registry Name: ISRCTNRegistry identification number: ISRCTN 68038570Registry URL: www.isrctn.com.


Subject(s)
Adolescent Behavior/psychology , Child Behavior/psychology , Conduct Disorder/rehabilitation , Foster Home Care/methods , Interpersonal Relations , Outcome Assessment, Health Care , Problem Behavior/psychology , Social Skills , Adolescent , Child , England , Female , Humans , Male
20.
Sci Data ; 2: 150052, 2015.
Article in English | MEDLINE | ID: mdl-26396743

ABSTRACT

The architecture of biogenic structures can be highly influential in determining species contributions to major soil and sediment processes, but detailed 3-D characterisations are rare and descriptors of form and complexity are lacking. Here we provide replicate high-resolution micro-focus computed tomography (µ-CT) data for the complete burrow systems of three co-occurring, but functionally contrasting, sediment-dwelling inter-tidal invertebrates assembled alone, and in combination, in representative model aquaria. These data (≤ 2,000 raw image slices aquarium(-1), isotropic voxel resolution, 81 µm) provide reference models that can be used for the development of novel structural analysis routines that will be of value within the fields of ecology, pedology, geomorphology, palaeobiology, ichnology and mechanical engineering. We also envisage opportunity for those investigating transport networks, vascular systems, plant rooting systems, neuron connectivity patterns, or those developing image analysis or statistics related to pattern or shape recognition. The dataset will allow investigators to develop or test novel methodology and ideas without the need to generate a complete three-dimensional computation of exemplar architecture.


Subject(s)
Invertebrates , Animals , Behavior, Animal , Imaging, Three-Dimensional , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...