Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Dev Biol ; 10: 819726, 2022.
Article in English | MEDLINE | ID: mdl-35237601

ABSTRACT

Therapeutic benefits of mesenchymal stem cells (MSCs) are now widely believed to come from their paracrine signalling, i.e. secreted factors such as cytokines, chemokines, and extracellular vesicles (EVs). Cell-free therapy using EVs is an active and emerging field in regenerative medicine. Typical 2D cultures on tissue culture plastic is far removed from the physiological environment of MSCs. The application of 3D cell culture allows MSCs to adapt to their cellular environment which, in turn, influences their paracrine signalling activity. In this study we evaluated the impact of 3D MSCs culture on EVs secretion, cargo proteome composition, and functional assessment in immunomodulatory, anti-inflammatory and anti-fibrotic properties. MSC-EVs from 2D and 3D cultures expressed classical EV markers CD81, CD63, and CD9 with particle diameter of <100 nm. There were distinct changes in immunomodulatory potencies where 3D cultures exhibited reduced indoleamine 2,3-dioxygenase (IDO) activity and significantly reduced macrophage phagocytosis. Administration of 2D and 3D EVs following double dose bleomycin challenge in aged mice showed a marked increase of bodyweight loss in 3D group throughout days 7-28. Histopathological observations of lung tissues in 3D group showed increased collagen deposition, myofibroblast differentiation and leukocytes infiltrations. Assessment of lung mechanics showed 3D group did not improve lung function and instead exhibited increased resistance and tissue damping. Proteome profiling of MSC-EV composition revealed molecular enrichment of EV markers (compared to parental cells) and differential proteome between EVs from 2D and 3D culture condition associated with immune-based and fibrosis/extracellular matrix/membrane organization associated function. This study provides insight into distinct variation in EV protein composition dependent on the cellular microenvironment of the parental cells, which could have implications in their therapeutic effect and potency. Overall, this work suggests that EVs produced from 3D MSC cultures did not enhance typical MSC-EV properties expected from 2D cultures (immunomodulation, anti-fibrotic, anti-inflammatory). The outcome highlights critical differences between MSC-EVs obtained from different culture microenvironments, which should be considered when scaling up MSC culture for clinical manufacturing.

2.
Atmos Chem Phys ; 21(13): 10499-10526, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34377145

ABSTRACT

Cloud drop number concentrations (N d) over the western North Atlantic Ocean (WNAO) are generally highest during the winter (DJF) and lowest in summer (JJA), in contrast to aerosol proxy variables (aerosol optical depth, aerosol index, surface aerosol mass concentrations, surface cloud condensation nuclei (CCN) concentrations) that generally peak in spring (MAM) and JJA with minima in DJF. Using aircraft, satellite remote sensing, ground-based in situ measurement data, and reanalysis data, we characterize factors explaining the divergent seasonal cycles and furthermore probe into factors influencing N d on seasonal timescales. The results can be summarized well by features most pronounced in DJF, including features associated with cold-air outbreak (CAO) conditions such as enhanced values of CAO index, planetary boundary layer height (PBLH), low-level liquid cloud fraction, and cloud-top height, in addition to winds aligned with continental outflow. Data sorted into high- and low-N d days in each season, especially in DJF, revealed that all of these conditions were enhanced on the high-N d days, including reduced sea level pressure and stronger wind speeds. Although aerosols may be more abundant in MAM and JJA, the conditions needed to activate those particles into cloud droplets are weaker than in colder months, which is demonstrated by calculations of the strongest (weakest) aerosol indirect effects in DJF (JJA) based on comparing N d to perturbations in four different aerosol proxy variables (total and sulfate aerosol optical depth, aerosol index, surface mass concentration of sulfate). We used three machine learning models and up to 14 input variables to infer about most influential factors related to N d for DJF and JJA, with the best performance obtained with gradient-boosted regression tree (GBRT) analysis. The model results indicated that cloud fraction was the most important input variable, followed by some combination (depending on season) of CAO index and surface mass concentrations of sulfate and organic carbon. Future work is recommended to further understand aspects uncovered here such as impacts of free tropospheric aerosol entrainment on clouds, degree of boundary layer coupling, wet scavenging, and giant CCN effects on aerosol-N d relationships, updraft velocity, and vertical structure of cloud properties such as adiabaticity that impact the satellite estimation of N d.

3.
J Heart Lung Transplant ; 40(1): 12-23, 2021 01.
Article in English | MEDLINE | ID: mdl-33339555

ABSTRACT

BACKGROUND: Chronic lung allograft dysfunction (CLAD) is the leading cause of mortality in lung transplant recipients. CLAD is characterized by respiratory failure owing to the accumulation of fibrotic cells in small airways and alveoli, inducing tissue contraction and architectural destruction. However, the source of the fibroblastic cells and the mechanism(s) underlying the accumulation and activation remain unexplained. Mesenchymal stromal cells (MSCs) are multipotent progenitors that are normally located in the lung tissue but can be isolated from the alveolar space in lung transplant recipients, where they have a profibrotic phenotype. Our objective was to identify the mediator(s) inducing migration and contractile differentiation of lung tissue MSCs. METHODS: Bronchoalveolar lavage (BAL) (7 healthy controls and 21 lung transplant recipients), CCL2, HGF, TGFB, EGF, and PDGF-BB and autotaxin were measured by enzyme-linked immunosorbent assay. BAL (7 healthy controls and 31 lung transplant recipients) lysophosphatidic acid (LPA) (16:0, 18:0, 18:1, 22:4) was measured by liquid chromatography with tandem mass spectrometry. The effect of inhibition of candidate mediators on BAL-mediated chemoattraction of MSCs and contraction of MSC-spiked collagen gel assays was assessed. BAL cells from a lung transplant recipient with CLAD were analyzed by single-cell RNA sequencing. RESULTS: We first demonstrate that BAL fluid from lung transplant recipients and particularly those with CLAD is potently chemoattractive to human lung tissue‒derived MSCs and induces a contractile phenotype. After excluding several candidate mediators, we show that LPA blockade completely abrogated transplant recipient BAL‒mediated chemoattraction of MSCs and contraction of MSC-spiked collagen gels. Furthermore, LPA levels were enriched in transplant recipient BAL, and LPA replicated the observed in vitro profibrotic effects of transplant recipient BAL. Finally, we identify BAL monocyte‒derived macrophages with autotaxin (ENPP2) and fibrotic transcriptional signature. CONCLUSIONS: Autotaxin-expressing alveolar macrophages are present in CLAD BAL. These cells potentially provide a local source of autotaxin/LPA that drives MSC recruitment and tissue contraction in CLAD. These cells are analogous to an aberrant macrophage population recently identified in idiopathic pulmonary fibrosis, suggesting an overlap in pathogenesis between CLAD and other forms of lung fibrosis.


Subject(s)
Bronchoalveolar Lavage Fluid/cytology , Lung Transplantation , Lung/metabolism , Lysophospholipids/metabolism , Mesenchymal Stem Cells/cytology , Pulmonary Fibrosis/metabolism , Transplant Recipients , Adult , Aged , Biomarkers/metabolism , Cell Movement , Collagen/metabolism , Female , Follow-Up Studies , Humans , Male , Mesenchymal Stem Cells/metabolism , Middle Aged , Pulmonary Fibrosis/pathology
4.
Appl Opt ; 58(3): 650-669, 2019 Jan 20.
Article in English | MEDLINE | ID: mdl-30694252

ABSTRACT

In early 2013, three airborne polarimeters were flown on the high altitude NASA ER-2 aircraft in California for the Polarimeter Definition Experiment (PODEX). PODEX supported the pre-formulation NASA Aerosol-Cloud-Ecosystem (ACE) mission, which calls for an imaging polarimeter in polar orbit (among other instruments) for the remote sensing of aerosols, oceans, and clouds. Several polarimeter concepts exist as airborne prototypes, some of which were deployed during PODEX as a capabilities test. Two of those instruments to date have successfully produced Level 1 (georegistered, calibrated radiance and polarization) data from that campaign: the Airborne Multiangle Spectropolarimetric Imager (AirMSPI) and the Research Scanning Polarimeter (RSP). We compared georegistered observations of a variety of scene types by these instruments to test whether Level 1 products agreed within stated uncertainties. Initial comparisons found radiometric agreement, but polarimetric biases beyond measurement uncertainties. After subsequent updates to calibration, georegistration, and the measurement uncertainty models, observations from the instruments now largely agree within stated uncertainties. However, the 470 nm reflectance channels have a roughly +6% bias of AirMSPI relative to RSP, beyond expected measurement uncertainties. We also find that observations of dark (ocean) scenes, where polarimetric uncertainty is expected to be largest, do not agree within stated polarimetric uncertainties. Otherwise, AirMSPI and RSP observations are consistent within measurement uncertainty expectations, providing credibility for the subsequent creation of Level 2 (geophysical product) data from these instruments, and comparison thereof. The techniques used in this work can also form a methodological basis for other intercomparisons, for example, of the data gathered during the recent Aerosol Characterization from Polarimeter and Lidar (ACEPOL) field campaign, carried out in October and November of 2017 with four polarimeters (including AirMSPI and RSP).

5.
Rev Geophys ; 56(2): 409-453, 2018 Jun.
Article in English | MEDLINE | ID: mdl-30148283

ABSTRACT

The cloud droplet number concentration (N d) is of central interest to improve the understanding of cloud physics and for quantifying the effective radiative forcing by aerosol-cloud interactions. Current standard satellite retrievals do not operationally provide N d, but it can be inferred from retrievals of cloud optical depth (τ c) cloud droplet effective radius (r e) and cloud top temperature. This review summarizes issues with this approach and quantifies uncertainties. A total relative uncertainty of 78% is inferred for pixel-level retrievals for relatively homogeneous, optically thick and unobscured stratiform clouds with favorable viewing geometry. The uncertainty is even greater if these conditions are not met. For averages over 1° ×1° regions the uncertainty is reduced to 54% assuming random errors for instrument uncertainties. In contrast, the few evaluation studies against reference in situ observations suggest much better accuracy with little variability in the bias. More such studies are required for a better error characterization. N d uncertainty is dominated by errors in r e, and therefore, improvements in r e retrievals would greatly improve the quality of the N d retrievals. Recommendations are made for how this might be achieved. Some existing N d data sets are compared and discussed, and best practices for the use of N d data from current passive instruments (e.g., filtering criteria) are recommended. Emerging alternative N d estimates are also considered. First, new ideas to use additional information from existing and upcoming spaceborne instruments are discussed, and second, approaches using high-quality ground-based observations are examined.

6.
Stem Cell Res Ther ; 7(1): 91, 2016 Jul 12.
Article in English | MEDLINE | ID: mdl-27406134

ABSTRACT

BACKGROUND: Bone marrow-derived mesenchymal stromal cells (BM-MSCs) are capable of repairing wounded lung epithelial cells by donating cytoplasmic material and mitochondria. Recently, we characterized two populations of human lung-derived mesenchymal stromal cells isolated from digested parenchymal lung tissue (LT-MSCs) from healthy individuals or from lung transplant recipients' bronchoalveolar lavage fluid (BAL-MSCs). The aim of this study was to determine whether LT-MSCs and BAL-MSCs are also capable of donating cytoplasmic content and mitochondria to lung epithelial cells. METHODS: Cytoplasmic and mitochondrial transfer was assessed by co-culturing BEAS2B epithelial cells with Calcein AM or Mitotracker Green FM-labelled MSCs. Transfer was then measured by flow cytometry and validated by fluorescent microscopy. Molecular inhibitors were used to determine the contribution of microtubules/tunnelling nanotubes (TNTs, cytochalasin D), gap junctions (carbenoxolone), connexin-43 (gap26) and microvesicles (dynasore). RESULTS: F-actin microtubules/TNTs extending from BM-MSCs, LT-MSCs and BAL-MSCs to bronchial epithelial cells formed within 45 minutes of co-culturing cells. Each MSC population transferred a similar volume of cytoplasmic content to epithelial cells. Inhibiting microtubule/TNTs, gap junction formation and microvesicle endocytosis abrogated the transfer of cytoplasmic material from BM-MSCs, LT-MSCs and BAL-MSCs to epithelial cells. In contrast, blocking connexin-43 gap junction formation had no effect on cytoplasmic transfer. All MSC populations donated mitochondria to bronchial epithelial cells with similar efficiency. Mitochondrial transfer was reduced in all co-cultures after microtubule/TNT or endocytosis inhibition. Gap junction formation inhibition reduced mitochondrial transfer in BM-MSC and BAL-MSC co-cultures but had no effect on transfer in LT-MSC co-cultures. Connexin-43 inhibition did not impact mitochondrial transfer. Finally, bronchial epithelial cells were incapable of donating cytoplasmic content or mitochondria to any MSC population. CONCLUSION: Similar to their bone marrow counterparts, LT-MSCs and BAL-MSCs can donate cytoplasmic content and mitochondria to bronchial epithelial cells via multiple mechanisms. Given that BM-MSCs utilize these mechanisms to mediate the repair of damaged bronchial epithelial cells, both LT-MSCs and BAL-MSCs will probably function similarly.


Subject(s)
Bone Marrow Cells/metabolism , Epithelial Cells/metabolism , Lung/metabolism , Mesenchymal Stem Cells/metabolism , Mitochondria/metabolism , Adult , Biological Transport , Bone Marrow Cells/ultrastructure , Bronchoalveolar Lavage Fluid/cytology , Cell Communication , Cell Line , Coculture Techniques , Connexin 43/genetics , Connexin 43/metabolism , Epithelial Cells/ultrastructure , Female , Gap Junctions/metabolism , Gap Junctions/ultrastructure , Gene Expression , Humans , Lung/ultrastructure , Male , Mesenchymal Stem Cells/ultrastructure , Microscopy, Fluorescence , Microtubules/metabolism , Microtubules/ultrastructure , Middle Aged , Mitochondria/ultrastructure , Primary Cell Culture
7.
Respirology ; 18(3): 397-411, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23316733

ABSTRACT

Mesenchymal stem cells (MSC) are a population of tissue-resident adult progenitor cells that were originally identified in bone marrow, but have now been identified in many organs including the lung. Although their precise role in organ function remains incompletely defined, mounting evidence suggests that they are an important component of the parenchymal progenitor cell niche and orchestrate organ homeostasis and repair following injury. In this review, what is known about MSC biology will be outlined with particular emphasis on lung biology, and the therapeutic potential of MSC-based cell therapy will also be highlighted.


Subject(s)
Lung Diseases/surgery , Lung/cytology , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/cytology , Humans , Lung Diseases/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...