Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pharm Res ; 37(5): 84, 2020 Apr 21.
Article in English | MEDLINE | ID: mdl-32318827

ABSTRACT

PURPOSE: The current trend for continuous drug product manufacturing requires new, affordable process analytical techniques (PAT) to ensure control of processing. This work evaluates whether property models based on spectral data from recent Fabry-Pérot Interferometer based NIR sensors can generate a high-resolution moisture signal suitable for process control. METHODS: Spectral data and offline moisture content were recorded for 14 fluid bed dryer batches of pharmaceutical granules. A PLS moisture model was constructed resulting in a high resolution moisture signal, used to demonstrate (i) endpoint determination and (ii) evaluation of mass transfer performance. RESULTS: The sensors appear robust with respect to vibration and ambient temperature changes, and the accuracy of water content predictions (±13 % ) is similar to those reported for high specification NIR sensors. Fusion of temperature and moisture content signal allowed monitoring of water transport rates in the fluidised bed and highlighted the importance water transport within the solid phase at low moisture levels. The NIR data was also successfully used with PCA-based MSPC models for endpoint detection. CONCLUSIONS: The spectral quality of the small form factor NIR sensor and its robustness is clearly sufficient for the construction and application of PLS models as well as PCA-based MSPC moisture models. The resulting high resolution moisture content signal was successfully used for endpoint detection and monitoring the mass transfer rate.


Subject(s)
Spectroscopy, Near-Infrared/economics , Spectroscopy, Near-Infrared/instrumentation , Technology, Pharmaceutical/methods , Drug Compounding , Micro-Electrical-Mechanical Systems , Powders/chemistry , Pressure , Temperature , Water
2.
Int J Pharm ; 493(1-2): 198-207, 2015 Sep 30.
Article in English | MEDLINE | ID: mdl-26200745

ABSTRACT

NIR imaging and Raman mapping of the dissolution of model pharmaceutical formulations containing the HCl salt of a developmental compound, were carried out using a custom designed flow through cell. The results of this work have shown that NIR imaging and Raman mapping are capable of monitoring the distribution of the components in a formulation during dissolution while also revealing any form changes which may occur in real time. The NIR and Raman data revealed that the drug underwent conversion to the free base when water was used as the dissolution medium. However, in 0.1M HCl this conversion was no longer seen as the medium was below the pHmax (the pH of saturation of both unionised and ionised species and above which the free base can form) of the drug. The data from both approaches broadly agreed demonstrating the applicability of these methods to studying and enhancing our understanding of the complex physical and chemical processes which occur during dissolution in real time.


Subject(s)
Hydrochloric Acid/chemistry , Pharmaceutical Preparations/chemistry , Cellulose/chemistry , Salts , Solubility , Spectroscopy, Near-Infrared , Spectrum Analysis, Raman , Tablets
SELECTION OF CITATIONS
SEARCH DETAIL
...