Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Infect Immun ; 88(11)2020 10 19.
Article in English | MEDLINE | ID: mdl-32839188

ABSTRACT

Recent efforts to develop an enterotoxigenic Escherichia coli (ETEC) vaccine have focused on the antigenically conserved tip adhesins of colonization factors. We showed previously that intranasal immunization with dsc19CfaE, a soluble variant of the in cis donor strand-complemented tip adhesin of a colonization factor of the class 5 family (CFA/I) fimbria, is highly immunogenic and protects against oral challenge with CFA/I-positive (CFA/I+) ETEC strain H10407 in the Aotus nancymaae nonhuman primate. We also reported a cholera toxin (CT)-like chimera (called dsc19CfaE-CTA2/CTB) in which the CTA1 domain of CT was replaced by dsc19CfaE that was strongly immunogenic when administered intranasally or orogastrically in mice. Here, we evaluate the immunogenicity and protective efficacy (PE) of a refined and more stable chimera comprised of a pentameric B subunit of ETEC heat-labile toxin (LTB) in lieu of the CTB pentamer and a donor strand truncation (dsc14) of CfaE. The refined chimera, dsc14CfaE-sCTA2/LTB, was highly immunogenic in mice when administered intranasally or intradermally, eliciting serum and fecal antibody responses against CfaE and LTB, as well as strong hemagglutination inhibition titers, a surrogate for neutralization of intestinal adhesion mediated by CfaE. Moreover, the chimera was safe and highly immunogenic when administered intradermally to guinea pigs. In A. nancymaae, intradermal (i.d.) immunization with chimera plus single-mutant heat-labile toxin [LT(R192G)] elicited strong serum anti-CfaE and anti-LTB antibody responses and conferred significant reduction of diarrhea compared to phosphate-buffered saline (PBS) controls (PE = 84.1%; P < 0.02). These data support the further evaluation of dsc14CfaE-sCTA2/LTB as an ETEC vaccine in humans.


Subject(s)
Adhesins, Escherichia coli/immunology , Cholera Toxin/immunology , Escherichia coli Infections/immunology , Escherichia coli Vaccines/immunology , Animals , Aotidae , Enterotoxigenic Escherichia coli/immunology , Escherichia coli Infections/prevention & control , Guinea Pigs , Mice , Recombinant Fusion Proteins/immunology
2.
PLoS One ; 15(3): e0230138, 2020.
Article in English | MEDLINE | ID: mdl-32176708

ABSTRACT

Surface-expressed colonization factors and their subunits are promising candidates for inclusion into a multivalent vaccine targeting enterotoxigenic Escherichia coli (ETEC), a leading cause of acute bacterial diarrhea in developing regions. However, soluble antigens are often poorly immunogenic in the absence of an adjuvant. We show here that the serum immune response to CfaE, the adhesin of the ETEC colonization factor CFA/I, can be enhanced in BALB/c mice by immunization with a chimeric antigen containing CfaE and pentameric cholera toxin B subunit (CTB) of cholera toxin from Vibrio cholerae. We constructed this antigen by replacing the coding sequence for the A1 domain of the cholera toxin A subunit (CTA) with the sequence of donor strand complemented CfaE (dscCfaE) within the cholera toxin operon, resulting in a dscCfaE-CTA2 fusion. After expression, via non-covalent interactions between CTA2 and CTB, the fusion and CTB polypeptides assemble into a complex containing a single dscCfaE-CTA2 protein bound to pentameric CTB (dscCfaE-CTA2/CTB). This holotoxin-like chimera retained the GM1 ganglioside binding activity of CTB, as well as the ability of CfaE to mediate the agglutination of bovine red blood cells when adsorbed to polystyrene beads. When administered intranasally to mice, the presence of CTB in the chimera significantly increased the serum immune response to CfaE compared to dscCfaE alone, stimulating a response similar to that obtained with a matched admixture of dscCfaE and CTB. However, by the orogastric route, immunization with the chimera elicited a superior functional immune response compared to an equivalent admixture of dscCfaE and CTB, supporting further investigation of the chimera as an ETEC vaccine candidate.


Subject(s)
Cholera Toxin , Enterotoxigenic Escherichia coli , Escherichia coli Vaccines , Fimbriae Proteins , Recombinant Fusion Proteins , Animals , Female , Mice , Adhesins, Bacterial/immunology , Adhesins, Bacterial/metabolism , Adjuvants, Immunologic/administration & dosage , Cholera Toxin/genetics , Cholera Toxin/immunology , Cholera Toxin/metabolism , Enterotoxigenic Escherichia coli/immunology , Escherichia coli Vaccines/immunology , Fimbriae Proteins/genetics , Fimbriae Proteins/immunology , Fimbriae Proteins/metabolism , Immunization , Immunogenicity, Vaccine , Mice, Inbred BALB C , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/metabolism
3.
J Infect Dis ; 220(3): 505-513, 2019 07 02.
Article in English | MEDLINE | ID: mdl-30897198

ABSTRACT

BACKGROUND: Enterotoxigenic Escherichia coli (ETEC) commonly cause diarrhea in children living in developing countries and in travelers to those regions. ETEC are characterized by colonization factors (CFs) that mediate intestinal adherence. We assessed if bovine colostral IgG (bIgG) antibodies against a CF, CS17, or antibodies against CsbD, the minor tip subunit of CS17, would protect subjects against diarrhea following challenge with a CS17-expressing ETEC strain. METHODS: Adult subjects were randomized (1:1:1) to receive oral bIgG against CS17, CsbD, or placebo. Two days prior to challenge, subjects began dosing 3 times daily with the bIgG products (or placebo). On day 3, subjects ingested 5 × 109 cfu ETEC strain LSN03-016011/A in buffer. Subjects were assessed for diarrhea for 120 hours postchallenge. RESULTS: A total of 36 subjects began oral prophylaxis and 35 were challenged with ETEC. While 50.0% of the placebo recipients had watery diarrhea, none of the subjects receiving anti-CS17 had diarrhea (P = .01). In contrast, diarrhea rates between placebo and anti-CsbD recipients (41.7%) were comparable (P = 1.0). CONCLUSIONS: This is the first study to demonstrate anti-CS17 antibodies provide significant protection against ETEC expressing CS17. More research is needed to better understand why anti-CsbD was not comparably efficacious. Clinical Trials Registration. NCT00524004.


Subject(s)
Antibodies, Bacterial/immunology , Colostrum/immunology , Diarrhea/immunology , Enterotoxigenic Escherichia coli/immunology , Escherichia coli Infections/immunology , Escherichia coli Vaccines/immunology , Protective Agents/pharmacology , Adhesins, Bacterial/immunology , Adult , Animals , Bacterial Toxins/immunology , Cattle , Colostrum/microbiology , Diarrhea/microbiology , Double-Blind Method , Enterotoxins/immunology , Escherichia coli Infections/microbiology , Escherichia coli Proteins/immunology , Female , Humans , Immunoglobulin G/immunology , Male
4.
J Infect Dis ; 216(1): 7-13, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28541500

ABSTRACT

Background: Tip-localized adhesive proteins of bacterial fimbriae from diverse pathogens confer protection in animal models, but efficacy in humans has not been reported. Enterotoxigenic Escherichia coli (ETEC) commonly elaborate colonization factors comprising a minor tip adhesin and major stalk-forming subunit. We assessed the efficacy of antiadhesin bovine colostral IgG (bIgG) antibodies against ETEC challenge in volunteers. Methods: Adults were randomly assigned (1:1:1) to take oral hyperimmune bIgG raised against CFA/I minor pilin subunit (CfaE) tip adhesin or colonization factor I (CFA/I) fimbraie (positive control) or placebo. Two days before challenge, volunteers began a thrice-daily, 7-day course of investigational product administered in sodium bicarbonate 15 minutes after each meal. On day 3, subjects drank 1 × 109 colony-forming units of colonization factor I (CFA/I)-ETEC strain H10407 with buffer. The primary efficacy endpoint was diarrhea within 120 hours of challenge. Results: After enrollment and randomization, 31 volunteers received product, underwent ETEC challenge, and were included in the per protocol efficacy analysis. Nine of 11 placebos developed diarrhea, 7 experiencing moderate to severe disease. Protective efficacy of 63% (P = .03) and 88% (P = .002) was observed in the antiadhesin bIgG and positive control groups, respectively. Conclusions: Oral administration of anti-CFA/I minor pilin subunit (CfaE) antibodies conferred significant protection against ETEC, providing the first clinical evidence that fimbrial tip adhesins function as protective antigens.


Subject(s)
Antibodies, Bacterial/therapeutic use , Colostrum/immunology , Diarrhea/drug therapy , Enterotoxigenic Escherichia coli , Escherichia coli Infections/drug therapy , Immunoglobulin G/therapeutic use , Adhesins, Bacterial/immunology , Administration, Oral , Adult , Animals , Antigens, Bacterial/immunology , Cattle , Colony Count, Microbial , Diarrhea/microbiology , Double-Blind Method , Female , Fimbriae Proteins/immunology , Fimbriae, Bacterial/genetics , Fimbriae, Bacterial/metabolism , Humans , Male , Reproducibility of Results , Young Adult
5.
Vaccine ; 34(2): 284-291, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26597148

ABSTRACT

Enterotoxigenic Escherichia coli (ETEC) are the most common cause of bacterial diarrhea in young children in developing countries and in travelers. Efforts to develop an ETEC vaccine have intensified in the past decade, and intestinal colonization factors (CFs) are somatic components of most investigational vaccines. CFA/I and related Class 5 fimbrial CFs feature a major stalk-forming subunit and a minor, antigenically conserved tip adhesin. We hypothesized that the tip adhesin is critical for stimulating antibodies that specifically inhibit ETEC attachment to the small intestine. To address this, we compared the capacity of donor strand complemented CfaE (dscCfaE), a stabilized form of the CFA/I fimbrial tip adhesin, and CFA/I fimbriae to elicit anti-adhesive antibodies in mice, using hemagglutination inhibition (HAI) as proxy for neutralization of intestinal adhesion. When given with genetically attenuated heat-labile enterotoxin LTR192G as adjuvant by intranasal (IN) or orogastric (OG) vaccination, dscCfaE exceeded CFA/I fimbriae in eliciting serum HAI titers and anti-CfaE antibody titers. Based on these findings, we vaccinated Aotus nancymaae nonhuman primates (NHP) with dscCfaE alone or admixed with one of two adjuvants, LTR192G and cholera toxin B-subunit, by IN and OG administration. Only IN vaccination with dscCfaE with either adjuvant elicited substantial serum HAI titers and IgA and IgG anti-adhesin responses, with the latter detectable a year after vaccination. In conclusion, we have shown that dscCfaE elicits robust HAI and anti-adhesin antibody responses in both mice and NHPs when given with adjuvant by IN vaccination, encouraging further evaluation of an ETEC adhesin-based vaccine approach.


Subject(s)
Enterotoxigenic Escherichia coli/immunology , Escherichia coli Infections/prevention & control , Escherichia coli Proteins/immunology , Escherichia coli Vaccines/immunology , Fimbriae Proteins/immunology , Adjuvants, Immunologic/administration & dosage , Administration, Intranasal , Administration, Oral , Animals , Antibodies, Bacterial/blood , Aotidae , Disease Models, Animal , Escherichia coli Vaccines/administration & dosage , Hemagglutination Inhibition Tests , Immunoglobulin A/blood , Immunoglobulin G/blood , Mice, Inbred BALB C , Treatment Outcome , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/immunology
6.
J Infect Dis ; 204(1): 60-4, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21628659

ABSTRACT

Human challenges with enterotoxigenic Escherichia coli (ETEC) have broadened our understanding of this important enteropathogen. We report findings from the first challenge studies using ETEC-expressing colonization factor fimbria CS17 and CS19. LSN03-016011/A (LT, CS17) elicited a dose-dependent effect, with the upper dose (6 × 10(9) organisms) causing diarrhea in 88% of recipients. WS0115A (LTSTp, CS19) also showed a dose response, with a 44% diarrhea rate at 9 × 10(9) organisms. Both strains elicited homologous antifimbrial and anti-LT antibody seroconversion. These studies establish the relative pathogenicity of ETEC expressing newer class 5 fimbriae and suggest suitability of the LT|CS17-ETEC challenge model for interventional trials.


Subject(s)
Adhesins, Bacterial/biosynthesis , Enterotoxigenic Escherichia coli/pathogenicity , Escherichia coli Infections/microbiology , Escherichia coli Infections/pathology , Escherichia coli Proteins/biosynthesis , Virulence Factors/biosynthesis , Adhesins, Bacterial/immunology , Adolescent , Adult , Antibodies, Bacterial/blood , Bacterial Toxins/immunology , Diarrhea/microbiology , Diarrhea/pathology , Enterotoxigenic Escherichia coli/growth & development , Enterotoxins/immunology , Escherichia coli Proteins/immunology , Female , Human Experimentation , Humans , Male , Middle Aged , Virulence Factors/immunology , Young Adult
7.
Clin Vaccine Immunol ; 15(8): 1222-8, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18579693

ABSTRACT

An oral, microencapsulated anti-colonization factor 6 antigen (meCS6) vaccine, with or without heat-labile enterotoxin with mutation R192G (LT(R192G)) (mucosal adjuvant), against enterotoxigenic Escherichia coli (ETEC) was evaluated for regimen and adjuvant effects on safety and immunogenicity. Sixty subjects were enrolled into a three-dose, 2-week interval or four-dose, 2-day interval regimen. Each regimen was randomized into two equal groups of meCS6 alone (1 mg) or meCS6 with adjuvant (2 microg of LT(R192G)). The vaccine was well tolerated and no serious adverse events were reported. Serologic response to CS6 was low in all regimens (0 to 27%). CS6-immunoglobulin A (IgA) antibody-secreting cell (ASC) responses ranged from 36 to 86%, with the highest level in the three-dose adjuvanted regimen; however, the magnitude was low. As expected, serologic and ASC LT responses were limited to adjuvanted regimens, with the exception of fecal IgA, which appeared to be nonspecific to LT administration. Further modifications to the delivery strategy and CS6 and adjuvant dose optimization will be needed before conducting further clinical trials with this epidemiologically important class of ETEC.


Subject(s)
Antigens, Bacterial/immunology , Bacterial Toxins/immunology , Diarrhea/prevention & control , Enterotoxins/immunology , Escherichia coli Infections/prevention & control , Escherichia coli Proteins/immunology , Escherichia coli Vaccines/adverse effects , Escherichia coli Vaccines/immunology , Adjuvants, Immunologic , Administration, Oral , Adolescent , Adult , Bacterial Toxins/genetics , Diarrhea/immunology , Diarrhea/microbiology , Enterotoxins/genetics , Escherichia coli/immunology , Escherichia coli Infections/immunology , Escherichia coli Infections/microbiology , Escherichia coli Proteins/genetics , Escherichia coli Vaccines/administration & dosage , Female , Humans , Immunoglobulin A/analysis , Male , Middle Aged , Mutation , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...