Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Mech B Fluids ; 105: 180-191, 2024.
Article in English | MEDLINE | ID: mdl-38770034

ABSTRACT

This in vitro study aims at clarifying the relation between the oscillatory flow of cerebrospinal fluid (CSF) in the cerebral aqueduct, a narrow conduit connecting the third and fourth ventricles, and the corresponding interventricular pressure difference. Dimensional analysis is used in designing an anatomically correct scaled model of the aqueduct flow, with physical similarity maintained by adjusting the flow frequency and the properties of the working fluid. The time-varying pressure difference across the aqueduct corresponding to a given oscillatory flow rate is measured in parametric ranges covering the range of flow conditions commonly encountered in healthy subjects. Parametric dependences are delineated for the time-averaged pressure fluctuations and for the phase lag between the transaqueductal pressure difference and the flow rate, both having clinical relevance. The results are validated through comparisons with predictions obtained with a previously derived computational model. The parametric quantification in this study enables the derivation of a simple formula for the relation between the transaqueductal pressure and the stroke volume. This relationship can be useful in the quantification of transmantle pressure differences based on non-invasive magnetic-resonance-velocimetry measurements of aqueduct flow for investigation of CSF-related disorders.

2.
J Fluid Mech ; 9392022 May 25.
Article in English | MEDLINE | ID: mdl-36337071

ABSTRACT

The monitoring of intracranial pressure (ICP) fluctuations, which is needed in the context of a number of neurological diseases, requires the insertion of pressure sensors, an invasive procedure with considerable risk factors. Intracranial pressure fluctuations drive the wave-like pulsatile motion of cerebrospinal fluid (CSF) along the compliant spinal canal. Systematically derived simplified models relating the ICP fluctuations with the resulting CSF flow rate can be useful in enabling indirect evaluations of the former from non-invasive magnetic resonance imaging (MRI) measurements of the latter. As a preliminary step in enabling these predictive efforts, a model is developed here for the pulsating viscous motion of CSF in the spinal canal, assumed to be a linearly elastic compliant tube of slowly varying section, with a Darcy pressure-loss term included to model the fluid resistance introduced by the trabeculae, which are thin collagen-reinforced columns that form a web-like structure stretching across the spinal canal. Use of Fourier-series expansions enables predictions of CSF flow rate for realistic anharmonic ICP fluctuations. The flow rate predicted using a representative ICP waveform together with a realistic canal anatomy is seen to compare favourably with in vivo phase-contrast MRI measurements at multiple sections along the spinal canal. The results indicate that the proposed model, involving a limited number of parameters, can serve as a basis for future quantitative analyses targeting predictions of ICP temporal fluctuations based on MRI measurements of spinal-canal anatomy and CSF flow rate.

3.
AJNR Am J Neuroradiol ; 43(9): 1369-1374, 2022 09.
Article in English | MEDLINE | ID: mdl-35981761

ABSTRACT

BACKGROUND AND PURPOSE: Forced respirations reportedly have an effect on CSF movement in the spinal canal. We studied respiratory-related CSF motion during normal respiration. MATERIALS AND METHODS: Six healthy subjects breathed at their normal rate with a visual guide to ensure an unchanging rhythm. Respiratory-gated phase-contrast MR flow images were acquired at 5 selected axial planes along the spine. At each spinal level, we computed the flow rate voxelwise in the spinal canal, together with the associated stroke volume. From these data, we computed the periodic volume changes of spinal segments. A phantom was used to quantify the effect of respiration-related magnetic susceptibility changes on the velocity data measured. RESULTS: At each level, CSF moved cephalad during inhalation and caudad during expiration. While the general pattern of fluid movement was the same in the 6 subjects, the flow rates, stroke volumes, and spine segment volume changes varied among subjects. Peak flow rates ranged from 0.60 to 1.59 mL/s in the cervical region, 0.46 to 3.17 mL/s in the thoracic region, and 0.75 to 3.64 mL/s in the lumbar region. The differences in flow rates along the canal yielded cyclic volume variations of spine segments that were largest in the lumbar spine, ranging from 0.76 to 3.07 mL among subjects. In the phantom study, flow velocities oscillated periodically during the respiratory cycle by up to 0.02 cm/s or 0.5%. CONCLUSIONS: Respiratory-gated measurements of the CSF motion in the spinal canal showed cyclic oscillatory movements of spinal fluid correlated to the breathing pattern.


Subject(s)
Magnetic Resonance Imaging , Spinal Canal , Humans , Magnetic Resonance Imaging/methods , Spinal Canal/diagnostic imaging , Spinal Cord , Subarachnoid Space/diagnostic imaging , Respiration , Cerebrospinal Fluid/diagnostic imaging
4.
AJNR Am J Neuroradiol ; 42(10): 1815-1821, 2021 10.
Article in English | MEDLINE | ID: mdl-34385144

ABSTRACT

BACKGROUND AND PURPOSE: Measuring transmantle pressure, the instantaneous pressure difference between the lateral ventricles and the cranial subarachnoid space, by intracranial pressure sensors has limitations. The aim of this study was to compute transmantle pressure noninvasively with a novel nondimensional fluid mechanics model in volunteers and to identify differences related to age and aqueductal dimensions. MATERIALS AND METHODS: Brain MR images including cardiac-gated 2D phase-contrast MR imaging and fast-spoiled gradient recalled imaging were obtained in 77 volunteers ranging in age from 25-92 years of age. Transmantle pressure was computed during the cardiac cycle with a fluid mechanics model from the measured aqueductal flow rate, stroke volume, aqueductal length and cross-sectional area, and heart rate. Peak pressures during caudal and rostral aqueductal flow were tabulated. The computed transmantle pressure, aqueductal dimensions, and stroke volume were estimated, and the differences due to sex and age were calculated and tested for significance. RESULTS: Peak transmantle pressure was calculated with the nondimensional averaged 14.4 (SD, 6.5) Pa during caudal flow and 6.9 (SD, 2.8) Pa during rostral flow. It did not differ significantly between men and women or correlate significantly with heart rate. Peak transmantle pressure increased with age and correlated with aqueductal dimensions and stroke volume. CONCLUSIONS: The nondimensional fluid mechanics model for computing transmantle pressure detected changes in pressure related to age and aqueductal dimensions. This novel methodology can be easily used to investigate the clinical relevance of the transmantle pressure in normal pressure hydrocephalus, pediatric communicating hydrocephalus, and other CSF disorders.


Subject(s)
Hydrocephalus, Normal Pressure , Hydrocephalus , Adult , Aged , Aged, 80 and over , Cerebral Aqueduct/diagnostic imaging , Cerebral Ventricles , Cerebrospinal Fluid , Child , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Subarachnoid Space
5.
AJNR Am J Neuroradiol ; 40(7): 1242-1249, 2019 07.
Article in English | MEDLINE | ID: mdl-31196863

ABSTRACT

BACKGROUND AND PURPOSE: Recent flow dynamics studies have shown that the eccentricity of the spinal cord affects the magnitude and characteristics of the slow bulk motion of CSF in the spinal subarachnoid space, which is an important variable in solute transport along the spinal canal. The goal of this study was to investigate how anatomic differences among subjects affect this bulk flow. MATERIALS AND METHODS: T2-weighted spinal images were obtained in 4 subjects and repeated in 1 subject after repositioning. CSF velocity was calculated from phase-contrast MR images for 7 equally spaced levels along the length of the spine. This information was input into a 2-time-scale asymptotic analysis of the Navier-Stokes and concentration equations to calculate the short- and long-term CSF flow in the spinal subarachnoid space. Bulk flow streamlines were shown for each subject and position and inspected for differences in patterns. RESULTS: The 4 subjects had variable degrees of lordosis and kyphosis. Repositioning in 1 subject changed the degree of cervical lordosis and thoracic kyphosis. The streamlines of bulk flow show the existence of distinct regions where the fluid particles flow in circular patterns. The location and interconnectivity of these recirculating regions varied among individuals and different positions. CONCLUSIONS: Lordosis, kyphosis, and spinal cord eccentricity in the healthy human spine result in subject-specific patterns of bulk flow recirculating regions. The extent of the interconnectivity of the streamlines among these recirculating regions is fundamental in determining the long-term transport of solute particles along the spinal canal.


Subject(s)
Cerebrospinal Fluid/physiology , Models, Theoretical , Spinal Canal/physiology , Subarachnoid Space/physiology , Adult , Female , Humans , Hydrodynamics , Magnetic Resonance Imaging , Male , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...